
Managing Messes in Computational Notebooks 
Andrew Head Fred Hohman Titus Barik 
UC Berkeley Georgia Institute of Technology Microsoft 

andrewhead@berkeley.edu fredhohman@gatech.edu titus.barik@microsoft.com 

Steven M. Drucker Robert DeLine 
Microsoft Research Microsoft Research 

sdrucker@microsoft.com rob.deline@microsoft.com 

ABSTRACT 
Data analysts use computational notebooks to write code 
for analyzing and visualizing data. Notebooks help analysts 
iteratively write analysis code by letting them interleave 
code with output, and selectively execute cells. However, as 
analysis progresses, analysts leave behind old code and out-
puts, and overwrite important code, producing cluttered and 
inconsistent notebooks. This paper introduces code gather-
ing tools, extensions to computational notebooks that help 
analysts fnd, clean, recover, and compare versions of code 
in cluttered, inconsistent notebooks. The tools archive all 
versions of code outputs, allowing analysts to review these 
versions and recover the subsets of code that produced them. 
These subsets can serve as succinct summaries of analysis 
activity or starting points for new analyses. In a qualitative 
usability study, 12 professional analysts found the tools use-
ful for cleaning notebooks and writing analysis code, and 
discovered new ways to use them, like generating personal 
documentation and lightweight versioning. 

CCS CONCEPTS 
• Human-centered computing → Interactive systems
and tools; • Software and its engineering → Develop-
ment frameworks and environments.

KEYWORDS 
Computational notebooks; messes; clutter; inconsistency; 
exploratory programming; code history; program slicing 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for proft or commercial advantage and that 
copies bear this notice and the full citation on the frst page. Copyrights 
for components of this work owned by others than the author(s) must 
be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specifc 
permission and/or a fee. Request permissions from permissions@acm.org. 
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK 
© 2019 Copyright held by the owner/author(s). Publication rights licensed 
to ACM. 
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00 
https://doi.org/10.1145/3290605.3300500 

• • •

messy
notebook

execution tim
e [4]

[27]

[11]

[2]

ordered, minimal, 
complete slices

execution 
log

slice

map

Figure 1: Code gathering tools help analysts manage pro-
gramming messes in computational notebooks. The tools 
map selected results (e.g., outputs, charts, tables) in a notebook to 
the ordered, minimal subsets or “slices” of code that produced them. 
With these slices, the tools help analysts clean their notebooks, 
browse versions of results, and discover provenance of results. 

ACM Reference Format: 
Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and 
Robert DeLine. 2019. Managing Messes in Computational Note-
books. In CHI Conference on Human Factors in Computing Sys-
tems Proceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland UK. 
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3290605. 
3300500 

1 INTRODUCTION 
Data analysts often engage in “exploratory programming” 
as they write and refne code to understand unfamiliar data, 
test hypotheses, and build models [19]. For this activity, they 
frequently use computational notebooks, which supplement 
the rapid iteration of an interpreted programming language 
with the ability to edit code in place, and see computational 
results interleaved with the code. A notebook’s fexibility 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 270 Page 1

https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3290605.3300500
mailto:permissions@acm.org
mailto:rob.deline@microsoft.com
mailto:sdrucker@microsoft.com


is also a downside, leading to messy code: in recent stud-
ies, analysts have called their code “ad hoc,” “experimental,” 
and “throw-away” [16], and described their notebooks as 
“messy” [21, 33], containing “ugly code” and “dirty tricks” in 
need of “cleaning” and “polishing” [33]. 
In essence, a notebook’s user interface is a collection of 

code editors, called “cells.” At any time, the user can submit 
code from any cell to a hidden interpreter session. This design 
leads to three types of messes common to notebooks: disor-
der, where the interpreter runs code in a diferent order than 
it is presented in the cells; deletion, where the user deletes or 
overwrites the contents of a cell, but the interpreter retains 
the efect of the cell’s code; and dispersal, where the code 
that generates a result is spread across many distant cells. 
For the millions of users of notebooks [17], such messes are 
quite common: for instance, nearly half of public notebooks 
on GitHub include cells that were executed in a diferent 
order than they are listed [30]. Messes make it difcult for 
an analyst to navigate and understand their code, and to re-
call how results (e.g., charts, tables) were produced. Messes 
also make analysts reluctant to share their analyses with 
stakeholders and collaborators [21, 33]. 

In this paper, we aim to improve the state of the art in tools 
for managing messes in notebooks. We introduce a suite of 
interactive tools, code gathering tools, as an extension to com-
putational notebooks. The tools aford analysts the ability 
to fnd, clean, and compare versions of code in messy note-
books. They build on a static program analysis technique 
called program slicing [38], which answers queries about the 
dependencies among a program’s variables. With code gath-
ering tools, an analyst frst selects a set of analysis results, 
which can be any cell output (e.g., charts, tables, console 
output) or variable defnition (e.g., data tables, models). Then 
the tool searches the execution log—an ordered history of all 
cells executed—to fnd an ordered, minimal subset or “slice” 
of code needed to compute the selected results (Figure 1). 
This paper makes two contributions. The frst contribu-

tion is the design and implementation of code gathering 
tools. Specifcally, the tools highlight dependencies used to 
compute results, to help analysts fnd code they wish to un-
derstand, reuse, and rewrite in cluttered notebooks. They 
provide ordered, minimal code slices that can serve as suc-
cinct summaries of analysis activity or starting points for 
branching analyses. Additionally, they archive past versions 
of results and allow analysts to explore these versions, and 
the code slices that produced them. Code gathering tools are 
implemented as an extension to Jupyter Notebook [15], a 
popular notebook with millions of users [17]. The extension 
is available for use as a design artifact and as a practical tool 
for exploratory data analysis in notebooks. 
The most important idea behind the interaction design 

of code gathering tools is post-hoc mess management—that 

tools should allow analysts to easily fnd, clean, and com-
pare versions of code in notebooks, regardless of whether 
they have followed a disciplined strategy to organize and 
version their code. Past tools for cleaning code often require 
efort: annotating cells with dependency information [37], 
folding and unfolding cells [31], and marking and tagging 
lightweight versions of snippets [18]. With code gathering 
tools, history is stored silently, and tailored slices of code are 
recalled on-demand with two or fewer clicks. 
Our second contribution is a qualitative usability study 

providing insight into the uses and usability of code gath-
ering tools for managing messes in notebooks. 12 profes-
sional data analysts used the tools in an in-lab study to clean 
notebooks and perform exploratory data analysis. We found 
that afordances for gathering code to a notebook were both 
valued and versatile, enabling analysts to clean notebooks 
for multiple audiences, generate personal reference mate-
rial, and perform lightweight branching. We also refned our 
understanding of the meaning of “cleaning,” and how code 
gathering tools support an important yet still incomplete set 
of tasks analysts consider to be part of code cleaning. This 
study confrmed that analysts thirst for tools that help them 
manage exploratory messes, and that code gathering tools 
provide a useful means to manage these messes.1

2 BACKGROUND AND RELATED WORK 
Messes in computational notebooks 
Lackluster code quality appears to be intrinsic to exploratory 
programming. Analysts regularly prioritize the efcient dis-
covery of solutions over writing high-quality code [19]. They 
clutter their programs by saving old versions of their code 
in comments [18, 39]. In notebooks in particular, poor code 
quality takes on a spatial dimension. Messes accrue and dis-
appear in an iterative process of expansion and reduction of 
code: analysts write code in many small cells to try out dif-
ferent approaches to solve a problem, view output from their 
code, and debug their code; and then combine and eliminate 
cells as their analyses reach completion [21]. 
Eventually, messes get in the way of data analysis. It be-

comes difcult to understand analyses split across many cells 
of a notebook, and long notebooks become time-consuming 
to navigate [21]. Important results accidentally get overwrit-
ten or deleted [33]. While analysts often wish to share their 
fndings with others [16, 21, 33], they are often reluctant to 
do so until they have cleaned their code [31, 33]. 

To manage these messes, analysts have diverse strategies 
to clean their code. Many delete cells they no longer need, 
consolidate smaller cells into larger cells, and delete full 
analyses that did not turn out helpful. Long notebooks are 

1See the project web page, https://microsoft.github.io/gather/, for installa-
tion instructions for the extension, and study materials. 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 270 Page 2

https://microsoft.github.io/gather/


abandoned for “fresh” ones with only a subset of successful 
parts from the long ones. Analysts organize code as they 
build it, some coding from top to bottom, some adding cells 
where they extend old analyses, some placing functions at 
the top, and some placing them at the bottom [21]. They add 
tables of contents, assign numbers to sections, limit the size 
of cells, and split long notebooks into shorter ones [33]. 

Because of the challenges and tedium of managing messes, 
data analysts have clearly indicated they need better tools to 
support the management of messes. In prior studies, analysts 
have asked for tools that let them collect scripts that can 
reproduce specifc results, compare outcomes from diferent 
versions of an analysis, recover copies of notebooks that 
produce a version of a result [21], and to recall the history 
of how data was created, used, and modifed [31]. 

Tools for cleaning messy code 
Messiness is pervasive problem in code written with any 
language or tool. As such, researchers have designed tools to 
help programmers clean bloated code. Recent mixed-initiative 
tools have been designed to help programmers extract mini-
mal, executable code examples [9] and self-contained soft-
ware components [13, 25] from existing code projects. Such 
tools, like ours, use program slicing [38] to fnd code that 
should be preserved and removed as code is cleaned. Code 
gathering tools help analysts clean notebook code by slicing 
a history of executed cell code. Verdant, like our tools, helps 
analysts collect “recipes” of notebook code that reproduce 
selected results using program slicing [20]. Uniquely, our 
paper describes afordances for cleaning, navigating, and 
browsing code versions in notebooks using such slices. 
Automated refactoring tools are a common type of code 

cleaning tool available in popular programming IDEs [26]. 
Refactoring tools help programmers improve the readability 
and maintainability of their code by assisting with behavior-
preserving code transformations, like renaming variables and 
extracting code into functions. Code gathering tools provide 
a type of refactoring for notebooks, letting analysts rearrange 
code so it reproduces selected outputs. We draw inspiration 
from direct interactions in recent refactoring tools developed 
by human-computer interaction researchers [10, 23]. 

Another task in cleaning code is annotating it so others can 
understand, run, extend, and maintain it. Tools can help pro-
grammers create walkthroughs of points of interest in code 
projects [27, 36] and, in the context of notebooks, help pro-
grammers fold cells and annotate them with descriptive head-
ers [31]. Tools such as these complement the code-centric 
cleaning utilities that code gathering tools provide. 

Locating the causes of program output 
As their code bases get larger and analysts throw away old 
code, analysts can fnd it difcult if not impossible to recall 

the code they used to produce important results. To help 
analysts recover the provenance of important results, re-
searchers have proposed tools that capture histories of an 
analyst’s activity, from their programming languages [29], 
exploratory data analysis applications [4], and operating 
system logs [7]. These tools then let programmers recall a 
result’s provenance by reviewing the captured logs. 

The software development tools community has designed 
a number of tools to help programmers fnd code that pro-
duces many types of observed output. These tools highlight 
lines of code as a program executes them [1, 2, 28], or flters 
the code for a program to only the lines that were executed in 
a recent execution [3, 6, 11, 12]. They also help programmers 
trace through code backward from static outputs like console 
output and error logs [22]. Like these prior systems, code 
gathering tools help programmers locate code of interest, in 
this case within computational notebooks. 

Managing and reviewing code versions 
Programmers often consult code histories to understand, 
debug, and extend their code [5]. They search for code to 
reuse by inspecting prior versions’ outputs, changelogs, and 
source code [35]. Prior tools have helped programmers make 
use of history to selectively undo code changes [40], review 
the evolution of selected snippets [34], and auto-complete 
code using legacy names [24]. To help data analysts manage 
code versions, researchers have designed tools to help them 
save and navigate versions of code fragments [8, 18, 20], 
notebook cells [20, 30], and entire notebooks [20]. 
In dialogue with this work, code gathering tools support 

post-hoc mess management, by helping analysts fnd, clean, 
and compare versions of code even if they spent no up-front 
efort on managing code versions or organizing their code. 
This approach was inspired by Janus’ automatic versioning 
of code cells upon execution [30], and Variolite’s archiving 
of runtime confgurations [18]. Our approach to versioning 
code difers slightly from prior tools. With Janus, versions 
are per cell, whereas versions in our tools are per “slice”; 
with Variolite, versions of code snippets are created with 
forethought, but in hindsight with code gathering tools. 

3 DESIGN MOTIVATIONS 
We conducted formative interviews with eight data analysts 
and builders of tools for data analysis at a large, data-driven 
software company. During the interviews, we proposed sev-
eral extensions to the notebook interaction model. Analysts 
expressed the most enthusiasm for tools to help them clean 
their results, and explore past variants of their code. These 
conversations and a review of the related literature yielded 
several key ideas that guided our design of notebook cleaning 
tools. We refer to the analysts as D1–8 below. 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 270 Page 3



Post-hoc management of messes. Analysts have diverse 
personal preferences of whether and how to organize and 
manage versions of code. The analysts we spoke to each 
had their own workarounds, like keeping cells ordered so 
they always reproduce the visible results (D7, D8), copying 
useful snippets to external fles (D4), and assigning dataset 
variables new names every time they transform them to 
avoid overwriting the original data (D6). Some code organi-
zation strategies confict with others: some analysts clean 
their notebooks as they write it, while others preserve a 
record of everything they have tried [21]—though you can-
not do both in current notebooks. One analyst noted that 
you don’t always know if you are creating versions of code 
until you already have (D7). We decided code gathering tools 
should assist analysts regardless of whether they think to 
organize their code, and whether they prefer to overwrite or 
save copies of old code. The tools silently collect history, and 
provide access to the code that produced any visible result. 

Portability of gathered code. Analysts reuse a notebook’s 
code in that notebook, other notebooks, and scripts [21]. The 
analysts we spoke to wanted tools to help them reuse code 
in new notebooks (D7), to apply old notebooks’ analyses to 
new data (D8), and to export code to other fles (D4, D5). We 
designed our tools to make it equally easy to gather code to 
new notebooks, cells, and lines of text. 

Query code via direct selection of analysis results. Prior re-
search shows that programmers frequently look to program 
output when searching for code to reuse [35]. In notebooks, 
visual results break up walls of monospace text, providing 
beacons. We anticipated that selections of results would pro-
vide the most direct method for accessing relevant history. 

4 A DEMO OF CODE GATHERING TOOLS 
To convey the experience of using the code gathering tools 
in Jupyter Notebook, we describe a short scenario.2 Consider 
an analyst, Dana, who is performing exploratory data analy-
sis to understand variation and determiners of quality of a 
popular consumer good—chocolate. This section shows how 
code gathering tools could help her fnd, clean, and compare 
versions of code during data analysis. 

Prologue: A proliferation of cells 
Dana starts her analysis by loading a dataset, importing 
dependencies, and fltering and transforming the data. She 
writes code to display tables so she can preview the data. 
To better understand key features of the data, she builds a 
model to predict chocolate quality from the other features. 
Through experimentation, she tailors the model parameters 
to learn more about the features. Throughout the analysis, 

2See also this paper’s video fgure. 

Figure 2: Finding relevant code with code gathering tools. 
With code gathering tools, an analyst can click on any result, and the 
notebook highlights in light purple just those lines that were used 
to compute the result or variable. The highlights appear throughout 
the notebook (which is condensed in the fgure). Black arrows have 
been added in the fgure to indicate the data dependencies that 
cause each line to be included in the highlighted set. 

she makes messes, overwriting old code, deleting code that 
appears irrelevant, running cells out-of-order, and accumu-
lating dozens of cells full of code and results. Dana starts to 
have trouble fnding what she needs in the notebook. 

Finding the code that produces a result 
After several hours building and testing models, Dana is 
satisfed with a version of the model, but then realizes there 
may be a problem with the model. One of the numeric felds 
contains erroneous values. Although Dana wrote code to fx 
these values, she cannot remember if she ran this code on 
the dataset that was used to trained the model. 

Because she has installed code gathering tools, Dana sees 
all variable defnitions (data frames, models, etc.) highlighted 
in blue and all visual outputs (console output, tables, fgures, 
etc.) outlined in blue. She clicks on the results of classifca-
tion (a variable named predictions) and then all lines that 
were used to compute the variable’s value are highlighted in 
light purple (Figure 2). Dana scrolls through the sprawling 
notebook to browse the highlighted lines, skipping over long 
sections of irrelevant code and results. She fnds the code 
that transforms the percentage data, namely, a cell defn-
ing the function normalizeIt and the cell after it. Because 
these lines are highlighted, Dana knows that she cleaned the 
column of unclean values before classifcation. 

Removing old and distracting analysis code 
Dana now has a notebook with a model that she likes—and 
much more code she no longer needs (Figure 3.1). Now that 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 270 Page 4



32

4

1

Figure 3: Cleaning a notebook with code gathering tools. Over the course of a long analysis, a notebook will become cluttered and 
inconsistent (1). With code gathering tools, an analyst can select results (e.g., charts, tables, variable defnitions, and any other code output) 
(2) and click “Gather to Notebook” (3) to obtain a minimal, complete, ordered slice that replicates the selected results (4).

Dana knows what her data looks like and has a working set 
of data fltering, data transformation, and model training 
code, the code to visualize the data and debug the APIs will 
just get in the way. Dana decides to clean her notebook to a 
state where it only has the useful model-building code. 
To clean the notebook, Dana clicks on a few results she 

wants to still be computed in the cleaned notebook, namely, 
the classifcation results in the predictions variable and 
a histogram showing the range of chocolate qualities used 
to build the classifer (Figure 3.2). Dana gets a sense of the 
size of the fnal cleaned notebook by looking at which lines 
in the notebook are highlighted as she selects each result. 
Then, Dana clicks the “Gather to Notebook” button (Fig-
ure 3.3), which opens a new notebook with the defnition 
of predictions, the bar chart of chocolate quality, and the 
other code needed to produce these two results. The new, 
cleaned notebook has 16 cells, instead of the 47 in her origi-
nal notebook. It contains the bar chart and omits 28 other 
visual results in the original. This reduces the overall size 
of the notebook from 13,044 to 1,248 vertical pixels in her 
browser, which is much easier to scroll through when editing 
the code (Figure 3.4). This cleaned notebook is guaranteed to 
replicate the results, as the tool reorders cells and resurrects 
deleted cells as necessary to produce the selected results. 
Dana verifes that running this notebook start-to-fnish in-
deed replicates the chosen predictions and bar chart. 

Reviewing versions of a result and the ordered, 
minimal code slices that produced them 
To build a better predictor, Dana has been experimenting 
with diferent parameters to a decision tree classifer, like its 
maximum allowable depth and the minimum samples per 
branch. Dana remembers that she had previously created a 
simple, shallow decision tree with promising performance, 
but has not yet found a model with better performance. 

With code gathering tools, Dana can summon all past 
versions of her classifer’s results and compare the code 
she used to produce these results. To do this, she clicks on 
a result—namely, a confusion matrix which visualizes the 
accuracy of the decision tree for each class—and then on 
the “Gather to Revisions” button. This brings up a version 
browser (Figure 4). Here, Dana sees all the versions of the 
result, arranged from left to right, starting with the current 
version and ending with the oldest version. Each version 
includes the relative time the result was computed, the code 
slice that produced that version and the result itself. 

Scrolling horizontally to access older versions, Dana fnds 
several examples of decision trees with comparatively good 
accuracy. Diferences from the current version of the code 
are shown with bold text and a colored background. Dana 
fnds the model she is looking for—a shallow tree with good 
performance. The code that produced this version can be 
copied as cells or text to the clipboard, or opened as a new 
notebook that replicates that version; Dana opens a notebook 
with this version so she can refer back to it later. 

Cleaning finished analysis code 
Dana fnished her data analysis and wants to share the results 
with an analyst on her team who can check her results and 
suggest improvements. However, the notebook is once again 
cluttered with code that would distract her colleague. While 
Dana wants to save her long and verbose notebook for her 
personal use later, she also wants a clean and succinct version 
of the notebook for her colleague. She chooses the prediction 
results of her model, clicks “Gather to Notebook,” and saves 
the generated notebook to a folder shared with her colleague. 

Exporting analysis code to a standalone script 
After refning her analysis with her colleague, Dana wants 
to export a script that can be packaged with an article she 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 270 Page 5



Opens a notebook with a 
minimal slice that 
replicates this version.

Past version of a result.

The code that produced 
the prior version.

The current version's 
code is highlighted in 
grey italics. 
Differences in the past 
version are bolded.

Figure 4: Comparing versions of a result with code gathering tools. When an analysts executes a cell multiple times, code gathering 
tools archive each version of the cell. When the analyst chooses the cell’s output—say, the confusion matrix shown above—and clicks “Gather 
to Revisions,” a version browser appears that lets them see all versions of that output, compare the code slices that produced each version, 
and load any of these slices into a new notebook, where the version’s results can be replicated. 

is writing, so that others can replicate her results in their 
preferred Python environments. To do this, Dana selects 
the code that produces the results she wants her script to 
replicate, clicks “Gather to Clipboard,” and then pastes the 
gathered code into a blank text fle. This script replicates the 
results Dana produced in her notebook. 

5 IMPLEMENTATION 

A computational notebook uses an underlying language in-
terpreter (like Python). At any time, an analyst can submit 
any cell’s code to the interpreter, in any order. The results 
that the interpreter produces and that the notebook displays 
depend on the order in which the analyst submits cell code. 
Hence, in the notebook context, a notebook’s “program” is 
not the content of the notebook’s cells, but the content of the 
cells that the analyst runs, in the order in which the analyst 
runs them. We call this the execution log. 
We defne code gathering as the application of program 

slicing to an execution log to collect ordered, minimal subsets 
of code that produced a given result. Program slicing is a 
static analysis technique wherein, given a target statement 
(called the slicing criterion), program slicing computes the 
subset of program statements (called the slice) that afect 
the value of the variables at the target statement [38]. In 
the notebook context, the variables/outputs that an analyst 
selects are the slicing criteria, and the gathered code is the 
slice. We implemented code gathering as a Jupyter Notebook 
extension with roughly 5,000 lines of TypeScript code. Our 
implementation supports notebooks written in Python 3. The 
details in this section could serve as a conceptual template for 
tool builders seeking to support code gathering for notebooks 
in other Python-like languages like Julia and R. 

Collecting and slicing an execution log 
To fnd the code that produces a result, the tools frst need 
a complete and ordered record of the code executed in the 
notebook. We build such a record, the “execution log,” by 
saving a summary of each cell as it is executed. A cell sum-
mary contains two parts: frst, the cell’s code, which will be 
joined with the code of other cells into a temporary program 
used to fnd code dependencies; second, the cell’s results, 
which can be used as slicing criteria, and shown in a version 
browser as the output of running that cell. 
The code for some cells, if included in the execution log, 

will cause errors during program slicing. Namely, if the code 
contains syntax errors, the temporary program used during 
dependency analysis will fail to parse; if it raises runtime 
errors, a slice containing that cell might raise the same er-
ror. Therefore, cells with syntax errors and runtime errors 
are omitted from the log. Ignoring cells with parse errors 
is consistent with Jupyter’s semantics: if an executed cell 
contains any parse errors, all of its code is ignored by the 
interpreter. Ignoring cells with run-time errors is inconsis-
tent with Jupyter’s semantics, in that the interpreter will run 
the statements up to the point where the error occurs. This 
limitation does not cause problems in practice, since analysts 
typically correct such errors and re-run the cells. 
Next, we slice the execution log to produce code slices 

that replicate results. When an analyst selects results in a 
notebook, they specify slicing criteria. When they select a 
variable defnition, they add the statement containing the 
variable defnition as a slicing criterion. When they select a 
cell’s output, they add all statements from that cell. 

To slice the execution log, there must frst be a “program” 
to slice. We build such a program by fltering the log to 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 270 Page 6



[101]

1
...

101

102
103

1

2

3

• • •

101

• • •
Result versions

Sliced cells

Selected 
result

[ ]

[ ]

[ ]

Cleaned, ordered, 
minimal notebook

Split log at selection1

User selects 
result

[102]

Concatenate2 Slice3 Combine4 Display5

Figure 5: Implementation of code gathering. When an analyst wants to gather the code that produced a result, the code gathering 
backend splits the log of executed cells at the last cell where the analyst clicked a result, and discards the other cells (1), concatenates the text 
from the remaining cells into a program (2), slices the program using the analyst’s selections as a slicing criterion (3), combines the sliced 
cells with the selected results if they are code outputs (4), and displays these cells in a notebook or a version browser (5). 

exclude the cells that were executed after the cells containing 
slicing criteria: these cells won’t be included in the slice, and 
would unnecessarily slow down the slicing algorithm. Then, 
the program is built by joining the text of the remaining cells, 
in the order they were executed (Figure 5.1–2). This program 
may include the code of a single cell more than once, e.g., if 
the cell was executed twice to compute the chosen result. 

Finally, we slice the program (Figure 5.3). We implemented 
a standard program slicing workfow—parsing the program 
with a Jison-generated parser [14]; searching the parse tree 
for variable uses, defnitions, and control blocks; computing 
control dependencies (e.g., dependencies from statements to 
surrounding if-conditions and for-loops) and data dependen-
cies (e.g., dependencies from statements using a variable to 
statements that defne or modify that variable); and slicing 
by tracing back from the slicing criteria to all the statements 
they depend on. When computing data dependencies, we 
determine if methods modify their arguments by looking up 
this information in a custom, extensible confguration fle 
containing data dependencies for functions from common 
data analysis libraries (e.g., pandas, matplotlib). 

Our current implementation supports interactive compu-
tation times by splitting slicing into small, reusable parts: 
when a cell is executed, its code is immediately parsed, and 
its variable defnitions and uses detected. With these precom-
puted pieces of analysis, gathering takes place at interactive 
speeds, as the most costly analyses have been performed 
before the analyst gathers any code. 

6 IN-LAB USABILITY STUDY 
We designed a two-hour, in-lab usability study to understand 
the support that code gathering tools can provide to data 
analysts as they write code in computational notebooks. We 
were fairly confdent of the ability of code gathering tools to 

eliminate clerical work—like the removal of irrelevant code, 
or recovery of dead code—given the design of the tool and 
evidence from several prior pilot studies. Therefore, the ques-
tions we sought to answer focused on the match between 
the control analysts desired over messy notebooks, and the 
support code gathering tools currently provide. We therefore 
designed our study to answer these research questions: 

RQ1. What does it mean to “clean”? When we ask analysts 
to clean a notebook, what do they do? Could code gathering 
tools support the work they are doing? 

RQ2. How do analysts use code gathering tools during ex-
ploratory data analysis? In our design of the tools, we hy-
pothesized that analysts would use the tools for highlight-
ing code, gathering to notebooks, and version browsing 
to fnd, clean, and compare versions of code. Do they? 

We invited 200 randomly selected data analysts at a large, 
data-driven software company. The invitation stated the re-
quirement of experience with Jupyter notebooks and Python. 
We recruited 12 participants altogether (aged 25–40 years, 
median age = 29.5 years, 3 female). Participants reported the 
following median years of experience on an ordinal scale: 
6–10 years programming; 3–5 years programming in Python; 
and 1–2 years using Jupyter Notebooks. Five participants 
reported using Jupyter Notebooks daily; three, weekly; one, 
monthly; and three, less than monthly. We compensated 
participants with a US$50 Amazon gift card. 

Tasks. To start, each participant signed a consent form 
and flled out a background questionnaire. The session then 
consisted of two cleaning tasks and an exploratory data anal-
ysis task. For the two cleaning tasks, we gave participants 
two existing notebooks from the UCSD Jupyter Notebook 
archive [32], one about Titanic passengers, and one about 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 270 Page 7



the World Happiness Index. We chose these notebooks be-
cause they are in Python, execute without errors, use popular 
analysis and visualization libraries, involve non-technical 
domains, and are long enough to be worthy of cleaning. We 
counterbalanced use of the two notebooks between subjects. 

For the frst cleaning task, we asked the participant to scan 
the notebook for an interesting result and to clean the note-
book with the goal of sharing that result with a colleague (10 
minutes). After a brief tutorial about code gathering, we then 
asked the participant to repeat the cleaning task on a difer-
ent notebook, this time using the code gathering features (10 
minutes). Finally, for the exploratory task, we gave partic-
ipants a dataset about Hollywood movies and asked them 
to create their own movie rankings, ready for sharing (up to 
30 minutes). We chose this dataset as we thought it would 
be understandable and interesting to analysts from a wide 
variety of backgrounds. During all tasks, participants could 
use a web browser to search the web for programming refer-
ence material. After each of the three tasks, the participant 
flled out a questionnaire: the frst about how they currently 
clean notebooks; the second about the usefulness of code 
gathering tools for notebook cleaning; and the third about 
the usefulness of code gathering tools for data exploration. 
Throughout the tasks, we encouraged participants to think 
aloud, and we transcribed their remarks. 
Each participant used an eight-core, 64-bit PC with 32 

GB of RAM, running Windows 10, with two side-by-side 
monitors with 1920 × 1200 pixels. One monitor displayed 
Jupyter Notebooks; the other displayed our tutorial and a 
browser opened to a search engine. 

7 RESULTS 
In the section below, we refer to the 12 analysts from the 
study with the pseudonyms P1–12. 

The meaning of “cleaning” 
Before giving analysts the tutorial about code gathering tools, 
we frst asked them to describe their cleaning practice and to 
clean a notebook in their usual way. This allowed us to under-
stand their own interpretation of “cleaning” before biasing 
them with our tool’s capabilities. Many analysts explained 
“cleaning” in a way that is compatible with code gathering, 
namely keeping a desired subset of results while discarding 
the rest (P8, P10–12). Indeed, one analysts’s description of 
cleaning is surprisingly close to the code gathering algorithm: 
“So I picked a plot that looked interesting and that’s maybe 
something I would want to share with someone and then, if 
you think of a dependency tree of cells, sort of walked back-
wards, removed everything that wasn’t necessary” (P10). 

In their everyday work, some analysts clean by deleting 
unwanted cells, but most copy/paste desired cells to a fresh 
notebook. (One analysts who cleans by deletion initially 

found the non-destructive nature of code gathering to be 
unintuitive, but adjusted after practice (P4).) Many described 
the process as error-prone and frequently re-execute the 
cleaned notebook to check that nothing is broken. 
Every analyst reported that choosing a subset of cells is 

part of the cleaning process. However, for several analysts, 
“cleaning” includes additional activities. Several analysts re-
ported that cleaning involves a shift in audience from oneself 
to other stakeholders, like peers and managers (P1, P5–7, 
P11). Hence, cleaning involves adding documentation (com-
ments or markdown) (P1, P5, P7, P10, P11) and polishing 
visualizations (e.g., adding titles and legends) (P1, P6). Some 
analysts reported that cleanup includes improving both note-
book quality (e.g., merging related cells (P11) and eliminating 
unwanted outputs (P3, P6)) and code quality (e.g., eliminating 
(P3, P6) or refactoring (P3, P4, P12) repeated code). Finally, 
for some, cleaning involves integrating the code into a team 
engineering process—for example, by checking the code into 
a repository or turning it into a reusable script (P7). 

How analysts use code gathering tools to support 
exploratory data analysis 
After both the second notebook cleaning task and the ex-
ploratory analysis task, we asked analysts to provide sub-
jective assessments of code gathering, broken down into 
seven features (Figure 6). Gathering code to a new notebook 
was the clear favorite, with nearly every analyst rating it as 
“very useful” for both tasks. The dependency highlights were 
also popular. Many analysts did not fnd opportunities to try 
the version browser during the two tasks, likely due to the 
short duration of the lab session. Similarly, many analysts did 
not experience the recovery of deleted code, either because 
no relevant code was deleted or because the user interface 
recovers deleted code silently. 

Valued and versatile feature of gathering code to new note-
books. Nine analysts gathered code to a new notebook at 
least once during the exploratory task. Analysts gathered 
code to a notebok a median of 1.5 times (σ = 3.7) during this 
task, with one analyst even gathering notebooks 12 times 
(P3). Analysts most often gathered code to a notebook for its 
intended purpose of cleaning up their code as a “fnishing 
move” after exploration (P6). Analysts clearly valued this 
aspect of the tool, calling it “amazing” and “beautiful” (P10), 
that they “loved it” (P5), it “hits the nail on the head” (P9), 
and will save them “a lot of time” (P11). 
Analysts saw additional value in gathering code to note-

books beyond our original design intentions. During the 
exploratory task, one analyst used gathering to a new note-
book as a lightweight branching scheme. As he explored 
alternatives, he would gather his preferred alternative to a 
new notebook to create a clean slate for further exploration 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 270 Page 8



Gather code to new notebook
Highlight lines code depends on

Paste gathered code as cells
Reorder gathered code as cells

Paste gathered code as text
Review versions in revision browser
Recover deleted / overwritten cells

0 3 6 9 12

7 
5 
2 
4 

1 

1 
3 

1 
3 

1 

1 
3 

4 
5 

6 
3 

4 
3 
3 

2 
3 

7 
12 

Task 1: Cleaning Notebooks Task 2: Exploratory Data Analysis

Very useful
Somewhat useful
Not useful
No basis to answer

0 3 6 9 12

5 
5 
4 
5 
1 

1 

4 

5 
2 
1 

3 
4 

3 
1 

3 
7 

1 

3 
3 

1 
6 

3 
3 

10 

# participants # participants

How useful was this 
feature to this task?

Figure 6: Analysts found code gathering tools most useful for gathering code to new notebooks, when they cleaned notebooks, 
and when they performed exploratory analysis. Analysts also appreciated dependency highlights, especially when they were cleaning code. 

(P3). Another analyst used gathering as a way to generate 
reference material. She created data visualizations, then gath-
ered them to new notebooks, so she could quickly fip to the 
visualizations as she carried on exploring in her original 
notebook (P4). Finally, one analyst used gathering to support 
cleaning for multiple audiences. At the end of the exploratory 
task, he gathered many visualizations to one notebook and 
documented them for his peer data analysts; he then gathered 
his movie ranking result to a diferent notebook intended for 
those who only want to know the fnal answer (P2). 
Analysts were eager to incorporate gathering into their 

data analysis workfows: seven of twelve analysts asked us 
when we would release the tool. One analyst envisioned 
gathering becoming part of code-cleaning parlance: “once 
this is public, people will send you bloated notebooks. I’ll 
say, nope, you should gather that” (P10). 

Use of dependency highlighting. During the exploratory 
task, 8 analysts clicked on at least one variable defnition, 
and 9 clicked on at least one output area. Additionally, during 
the cleaning tasks, as these tasks involved reading unfamiliar 
notebooks, a few analysts used the dependency highlights 
as a way to understand the unfamiliar code. 

Use and disuse of the version browser. Two analysts opened 
the version browser at least once (P2, P3). Both copied the 
cells to the clipboard from a version in the version browser 
at least once; one analyst in fact copied cells for versions four 
times during their session (P2). The other analyst opened a 
version in a new notebook. This analyst wanted to compare 
versions of a cell that sorted data based on two diferent 
dimensions, and used the version browser to recover code 
from a prior version without overwriting the current cells, 
which they wished to preserve (P3). 

Some analysts who did not use the version browser be-
lieved that they might eventually use it in their own work 
(P6, P8, P9). One analyst noted Jupyter Notebook’s imple-
mentation of “undo” is not sufcient for them, and the ver-
sion browser could provide some of the backtracking func-
tionality they want (P6). Another reported that the version 

browser could be useful in their current work, where they 
have iteratively developed an algorithm and are managing 
three notebooks containing diferent versions of analyses 
(P9). However, two analysts believed they wouldn’t use the 
version browser, as its view of versions is too restrictive. 
The version browser collects versions ending with multiple 
executions of the same cell, yet these analysts preferred to 
modify and re-run old analyses in new cells (P10, P11). 

Downsides and gaps. A few analysts mentioned that re-
peatedly gathering code to a new notebook creates a diferent 
kind of mess, namely clutter across notebooks, rather than 
clutter within a notebook. For example, gathering multiple 
times typically causes initialization code (e.g., loading the 
dataset) to be duplicated in each generated notebook (P3, P4, 
P6). In efect, a notebook and the notebooks gathered from it 
form a parent/child relationship that the user interface does 
not currently recognize. Analysts suggested several improve-
ments. First, gathering to a new notebook should create a 
provisional notebook, rather than being saved by default, 
and its name should be related to the original notebook’s 
name. One analyst suggested linked editing across this fam-
ily of notebooks as a way to deal with duplicated code. For 
example, renaming a variable in one family member could 
automatically rename it in all members (P12). 
Two analysts believed that comments, when close to the 

code, should be gathered alongside the code they comment 
on (P3, P10). One of these analysts noted that including 
irrelevant comments would not be problematic, as “it’s easy 
to remove some extraneous text” (P10). 

Validating the design motivations 
Analysts’ feedback ofered evidence of the role that our de-
sign motivations played in the usefulness of the tools: 

Post-hoc management of messes. Analysts valued the abil-
ity to manage messes without up-front efort to organize and 
version code. This was a beneft of gathering to new note-
books, as analysts appreciated simple afordances to clean 
up their messy analysis code (P1, P2, P6, P8, P9). For one 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 270 Page 9



analyst, the tool encouraged them, for better or worse, to 
“not to care. . . too much about data cleaning or structure at 
this moment. I say it was nice in a way, that I can just kind of 
go on with what I want to do” (P12). For some analysts, this 
was the downside of the version browser, which required 
them to run new versions of code in the same cell (P10, P11). 

Portability of gathered code. Analysts reused gathered code 
by opening fresh notebooks, pasting cells, and pasting plain-
text. In the exploratory task, nine analysts gathered code to 
notebooks, and fve gathered code to the clipboard, to paste 
as either cells or plaintext. By pasting plaintext into one cell, 
analysis code looked “a lot cleaner” (P3), and several ana-
lysts wanted an easier way to gather code to scripts. Others 
preferred pasting code as distinct cells (P5, P7). One analyst 
simply liked having the choice (P10). 

Querying code via direct selection of analysis results. Ana-
lysts appreciated the directness with which they could gather 
code: “It was very easy to just click, click, click on something 
and then grab the code that produced” a result (P10). The 
directness allowed analysts to clean their code by asking, 
“what do I need?” rather than “what do I not need?” (P3). 

Limitations 
Our study has two limits to external validity, which are com-
mon in lab-based usability evaluations: frst, the participants 
did not do their own work, on their own data, in their own 
time frame. We created realistic tasks by choosing notebooks 
and datasets from the UCSD Notebook Archive, itself mined 
from GitHub. Ideally, participants would use their own data 
and analyses. However, several informants in our formative 
interviews said their data was too sensitive for us to observe, 
so we did not pursue this option. The second limitation is the 
study’s short duration, which we believe accounts for the 
low use of the version browser feature. As P6 commented, 
“the other features will be more valued for notebooks that 
have been used for a long time/long project.” 

8 DISCUSSION AND FUTURE WORK 
To help analysts manage messes in their code, we ofer tool 
builders the following suggestions: 

Support a broad set of notebook cleaning tasks. While slic-
ing and ordering code is a key step in cleaning notebooks, 
analysts still need support for many other cleaning tasks. 
This includes refactoring code (e.g., eliminating duplicates 
and extracting methods), restructuring notebooks (e.g., merg-
ing cells), polishing visualizations, and providing additional 
documentation to explain the code and results. Many of these 
tasks still lack tool support in computational notebooks. 

Design versioning tools to support many ways of organizing 
code. In our study, and in Rule’s study of Janus [30], analysts 

used cell version histories less than expected. Is this because 
of issues in tool design, or because of the studies’ length? 
Evidence from our study lends credence to both claims. Some 
analysts in our study told us they would not use the “Gather 
to Revisions” feature, as they wrote versions of code in a 
way that our system could not detect, i.e. duplicating and 
changing a cell’s content elsewhere in the notebook. For 
future tools, two cells’ “sameness” should not be determined 
by a cell’s placement, but perhaps by using heuristics such 
as text similarity. Furthermore, several participants reported 
they didn’t have enough time to create versions during the 
study, suggesting the need for longer programming sessions, 
and perhaps long-term deployments, in future studies. 

Code gathering with history and compositionality. The code 
gathering tools’ execution log lasts only for a single program-
ming session, which limits the scope of the Revisions but-
ton and resurrecting code from deleted or overwritten cells. 
Future tools should use a persistent execution log. Several 
participants wanted to create a cleaned notebook in a series 
of steps, that is, for a gathering step to “patch” notebooks 
gathered in a previous step. Future tools could use algorithms 
from revision control systems to support this fexibility. 

Reuse code gathering tools in other programming environ-
ments. Code gathering can be useful in other tools, such 
as read-eval-print loops for interpreted languages like R, 
Python, Scala, and others. These interpreted languages are 
another popular category of tools for data analysts. 

Conclusions 
Our qualitative usability study with 12 professional data sci-
entists confrmed that cleaning computational notebooks is 
primarily about removing unwanted analysis code and re-
sults. The cleaning task can also involve secondary steps like 
improving code quality, writing documentation, polishing 
results for a new audience, or creating scripts. Participants 
fnd the primary cleaning task to be clerical and error-prone. 
They therefore responded positively to the code gathering 
tools, which automatically produce the minimal code nec-
essary to replicate a chosen set of analysis results, using 
a novel application of program slicing. Analysts primarily 
used code gathering as a “fnishing move” to share work, 
but also found unanticipated uses like generating reference 
material, creating lightweight branches in their code, and 
creating summaries for multiple audiences. 

ACKNOWLEDGMENTS 
We thank Christian Bird and Ian Drosos for helpful discus-
sions about tool and study design, and the data scientists at 
Microsoft who participated in the interviews and studies. 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 270 Page 10



REFERENCES 
[1] Joel Brandt, Vignan Pattamatta, William Choi, Ben Hsieh, and Scott R. 

Klemmer. 2010. Rehearse: Helping Programmers Adapt Examples by
Visualizing Execution and Highlighting Related Code. Technical Report.
Stanford University.

[2] Brian Burg, Richard Bailey, Andrew J. Ko, and Michael D. Ernst. 2013.
Interactive Record/Replay for Web Application Debugging. In Proceed-
ings of the ACM Symposium on User Interface Software and Technology. 
ACM, 473–483.

[3] Brian Burg, Andrew J. Ko, and Michael D. Ernst. 2015. Explaining Vi-
sual Changes in Web Interfaces. In Proceedings of the ACM Symposium
on User Interface Software and Technology. ACM, 259–269.

[4] Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Schei-
degger, Cláudio T. Silva, and Huy T. Vo. 2006. VisTrails: Visualization
meets Data Management. In Proceedings of the ACM International Con-
ference on Management of Data. ACM, 745–747.

[5] Mihai Codoban, Sruti Srinivasa Ragavan, Danny Dig, and Brian Bailey.
2015. Software History under the Lens: A Study on Why and How De-
velopers Examine It. In Proceedings of the IEEE International Conference
on Software Maintenance and Evolution. IEEE, 1–10.

[6] Paul A. Gross, Micah S. Herstand, Jordana W. Hodges, and Caitlin L.
Kelleher. 2010. A Code Reuse Interface for Non-Programmer Mid-
dle School Students. In Proceedings of the International Conference on
Intelligent User Interfaces. ACM, 219–228.

[7] Philip J. Guo and Margo Seltzer. 2012. BURRITO: Wrapping Your
Lab Notebook in Computational Infrastructure. In Proceedings of the
USENIX Workshop on the Theory and Practice of Provenance (TaPP’12).

[8] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R.
Klemmer. 2008. Design as Exploration: Creating Interface Alternatives
through Parallel Authoring and Runtime Tuning. In Proceedings of
the ACM Symposium on User interface Software and Technology. ACM, 
91–100.

[9] Andrew Head, Elena L Glassman, Björn Hartmann, and Marti A Hearst.
2018. Interactive Extraction of Examples from Existing Code. In Pro-
ceedings of ACM Conference on Human Factors in Computing Systems. 
ACM, Article 85.

[10] Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. 2018. Deuce: 
A Lightweight User Interface for Structured Editing. In Proceedings
of the ACM/IEEE International Conference on Software Engineering.
ACM/IEEE, 654–664.

[11] Joshua Hibschman and Haoqi Zhang. 2015. Unravel: Rapid Web Appli-
cation Reverse Engineering via Interaction recording, Source Tracing,
and Library Detection. In Proceedings of the ACM Symposium on User
Interface Software and Technology. ACM, 270–279.

[12] Joshua Hibschman and Haoqi Zhang. 2016. Telescope: Fine-Tuned
Discovery of Interactive Web UI Feature Implementation. In Proceed-
ings of the ACM Symposium on User Interface Software and Technology. 
ACM, 233–245.

[13] Reid Holmes and Robert J. Walker. 2012. Systematizing Pragmatic
Software Reuse. ACM Transactions on Software Engineering and Method-
ology 21, 4, Article 20 (2012).

[14] Jison. http://jison.org
[15] Jupyter. http://jupyter.org/
[16] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jefrey Heer.

2012. Enterprise Data Analysis and Visualization: An Interview Study.
IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012),
2917–2926.

[17] Kyle Kelley and Brian Granger. 2017. Jupyter Frontends: From the
Classic Jupyter Notebook to JupyterLab, nteract, and Beyond. Video.
In JupyterCon. https://www.youtube.com/watch?v=YKmJvHjTGAM

[18] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Sup-
porting Exploratory Programming by Data Scientists. In Proceedings of
ACM Conference on Human Factors in Computing Systems. 1265–1276.

[19] Mary Beth Kery and Brad A. Myers. 2017. Exploring Exploratory Pro-
gramming. In Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing. IEEE, 25–29.

[20] Mary Beth Kery and Brad A. Myers. 2018. Interactions for Untangling
Messy History in a Computational Notebook. In Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing. 
IEEE, 147–155.

[21] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and 
Brad A. Myers. 2018. The Story in the Notebook: Exploratory Data
Science using a Literate Programming Tool. In Proceedings of the ACM
Conference on Human Factors in Computing Systems. ACM, Article 174.

[22] Andrew Ko and Brad A. Myers. 2009. Finding Causes of Program
Output with the Java Whyline. In Proceedings of the ACM Conference 
on Human Factors in Computing Systems. ACM, 1569–1578.

[23] Yun Young Lee, Nicholas Chen, and Ralph E. Johnson. 2013. Drag-and-
Drop Refactoring: Intuitive and Efcient Program Transformation. In
Proceedings of the IEEE International Conference on Software Engineer-
ing. IEEE, 23–32.

[24] Yun Young Lee, Darko Marinov, and Ralph E. Johnson. 2015. Tem-
pura: Temporal Dimension for IDEs. In Proceedings of the IEEE/ACM
International Conference on Software Engineering, Vol. 1. IEEE/ACM,
212–222.

[25] Josip Maras, Maja Stula, Jan Carlson, and Ivica Crnković. 2013. Iden-˘ 
tifying Code of Individual Features in Client-Side Web Applications.
IEEE Transactions on Software Engineering 39, 12 (2013), 1680–1697.

[26] Emerson Murphy-Hill and Andrew P Black. 2008. Refactoring Tools:
Fitness for Purpose. IEEE Software 25, 5 (2008).

[27] Christopher Oezbek and Lutz Prechelt. 2007. JTourBus: Simplify-
ing Program Understanding by Documentation that Provides Tours
Through the Source Code. In Proceedings of the IEEE International
Conference on Software Maintenance. IEEE, 64–73.

[28] Stephen Oney and Brad Myers. 2009. FireCrystal: Understanding
Interactive Behaviors in Dynamic Web Pages. In Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing. 
IEEE, 105–108.

[29] João Felipe Pimentel, Juliana Freire, Leonardo Murta, and Vanessa
Braganholo. 2016. Fine-Grained Provenance Collection over Scripts
Through Program Slicing. In Proceedings of the International Provenance 
and Annotation Workshop. Springer, 199–203.

[30] Adam Rule. 2018. Design and Use of Computational Notebooks. Ph.D.
Dissertation. University of California San Diego.

[31] Adam Rule, Ian Drosos, Aurélien Tabard, and James D. Hollan. 2018.
Aiding Collaborative Reuse of Computational Notebooks with Anno-
tated Cell Folding. In Proceedings of the ACM Conference on Computer-
Supported Cooperative Work and Social Computing. ACM, Article 150.

[32] Adam Rule, Aurélien Tabard, and James D. Hollan. Data
from: Exploration and Explanation in Computational Notebooks.
https://doi.org/10.6075/J0JW8C39.

[33] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration 
and Explanation in Computational Notebooks. In Proceedings of the
ACM Conference on Human Factors in Computing Systems. ACM, Article
32.

[34] Francisco Servant and James A. Jones. 2012. History Slicing: Assist-
ing Code-Evolution Tasks. In Proceedings of the ACM International
Symposium on the Foundations of Software Engineering. ACM, Article
43.

[35] Sruti Srinivasa Ragavan, Sandeep Kaur Kuttal, Charles Hill, Anita
Sarma, David Piorkowski, and Margaret Burnett. 2016. Foraging among 
an Overabundance of Similar Variants. In Proceedings of the ACM

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 270 Page 11

http://jison.org
http://jupyter.org/
https://www.youtube.com/watch?v=YKmJvHjTGAM
https://doi.org/10.6075/J0JW8C39


Conference on Human Factors in Computing Systems. ACM, 3509–3521. 
[36] Ryo Suzuki. 2015. Interactive and Collaborative Source Code Anno-

tation. In Proceedings of the IEEE/ACM International Conference on 
Software Engineering, Vol. 2. IEEE, 799–800. 

[37] Unofcial Jupyter Notebook Extensions. 
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/. 

[38] Mark Weiser. 1981. Program slicing. In Proceedings of the International 
Conference on Software Engineering. IEEE, 439–449. 

[39] YoungSeok Yoon and Brad A. Myers. 2012. An Exploratory Study 
of Backtracking Strategies Used by Developers. In Proceedings of the 
International Workshop on Cooperative and Human Aspects of Software 
Engineering. IEEE, 138–144. 

[40] YoungSeok Yoon and Brad A. Myers. 2015. Supporting Selective Undo 
in a Code Editor. In Proceedings of the IEEE/ACM International Confer-
ence on Software Engineering, Vol. 1. IEEE/ACM, 223–233. 

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 270 Page 12

https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/

	Abstract
	1 Introduction
	2 Background and Related Work
	Messes in computational notebooks
	Tools for cleaning messy code
	Locating the causes of program output
	Managing and reviewing code versions

	3 Design Motivations
	4 A Demo of code gathering tools
	Prologue: A proliferation of cells
	Finding the code that produces a result
	Removing old and distracting analysis code
	Reviewing versions of a result and the ordered, minimal code slices that produced them
	Cleaning finished analysis code
	Exporting analysis code to a standalone script

	5 Implementation
	Collecting and slicing an execution log

	6 In-Lab Usability Study
	7 Results
	The meaning of ``cleaning''
	How analysts use code gathering tools to support exploratory data analysis
	Validating the design motivations
	Limitations

	8 Discussion and Future Work
	Conclusions

	Acknowledgments
	References



