A Community College Blended Learning Classroom
Experience through Artificial Intelligence in Games

Titus Barik*T, Michael Everett!, Rogelio E. Cardona-Rivera*, David L. Roberts*, Edward F. Gehringer*
*Department of Computer Science, North Carolina State University
{tbarik, recardon}@ncsu.edu, robertsd @csc.ncsu.edu, efg@ncsu.edu
TWayne Community College, Goldsboro, NC, michael.everett@sas.com

Abstract—We report on the experience of teaching an
industry-validated course on Artificial Intelligence in Computer
Games within the Simulation and Game Design department at
a two-year community college during a 16-week semester. The
course format used a blended learning just-in-time teaching
approach, which included active learning programming exercises
and one-on-one student interactions. Moskal’s Attitudes Toward
Computer Science survey showed a positive and significant
increase in students in both interest (W(10) = 25, p = 0.011) and
professional (W(10) = 49.5, p = 0.037) constructs. The Felder-
Soloman Index of Learning Styles (n = 14) failed to identify
any statistically significant differences in learning styles when
compared to a four-year CS1 class. In the final class evaluation,
8 out of 13 students (62 %) strongly or very strongly preferred the
blended learning approach. We validated this course through four
semi-structured interviews with game companies. The interview
results suggest that companies are strongly favorable to the course
content and structure. The results of this work serve as a template
that community colleges can adopt for their curriculum.

I. INTRODUCTION

Community college students face a unique set of challenges
that differ in many ways from those of traditional four-
year University college students. A significant number of
community college students enter their programs lacking
study skills and the academic maturity needed to handle
more rigorous, self-directed approaches used in traditional
colleges [1]. Many of these students have responsibilities
outside of school, placing further demands on their time and
financial resources. For these students, community colleges
must serve as a critical bridge between academia and industry
and provide them with a practical and industry-focused
education that prepares them for the workforce. At the
end of a two-year program, students are expected to have
sufficient training so that they can be placed into entry-
level positions in their respective fields immediately after
graduation. Given these student and instructional differences,
we believe that educators should not tacitly assume that
pedagogical approaches and experiences that have been
successful in traditional institutions can be applied with equal
success at the community college level; these approaches must
be once again validated in a two-year setting.

Students in community colleges typically restrict them-
selves to a focused curriculum that emphasizes skills practical
for industry. As such, community colleges must make continual
efforts to ensure that their courses are relevant and useful to
the industry jobs students are seeking. This task cannot be
accomplished in isolation, and can only be successful when
academia and industry collaborate in curriculum design. We

argue that this collaboration must occur not only at the program
level, but also at the individual course level, so that each course
itself is validated as being appropriate to the types of skills that
industry demands.

It is with this understanding that we report on the
experience of teaching an elective, pilot course on Artificial
Intelligence (AI) in Computer Games within the Simulation
and Game Design curriculum at a two-year community college
during the 16-week Fall 2012 semester. An advisory committee
comprised of both academic and industry members identified
the following three criteria for success: 1) to evaluate if
teaching computational thinking through game design can
positively increase attitudes about Computer Science; 2) to
assess student reactions to a blended learning classroom
experience; and 3) to validate whether the learning objectives
of the course are relevant and useful to industry.

The course format used a blended learning approach,
which consisted of discussions, in-class active learning
programming exercises, and one-on-one student interactions
with the instructor.! We minimized the use of formal lecture;
when necessary, we delivered lecture content using a just-
in-time teaching approach [2] to address observed student
difficulties. The course content can be summarized as five
weeks of learning the Python programming language through
a game context that emphasized algorithmic thinking, with the
remaining semester time spent on Al for games topics.

To evaluate instructional compatibility with pedagogical
techniques used in four-year institutions, students completed
the Felder-Soloman Index of Learning Styles (ILS) question-
naire [3] (n = 14). To identify changes in student attitudes,
students completed the Moskal’s Attitudes Toward Computer
Science survey [4] (n = 10) twice during the semester. To
determine whether our blended learning classroom approach
was well-received, students completed a final evaluation (n =
13) with 5-point Likert-item questions. Finally, to validate
our course, we performed semi-structured interviews with four
local game companies.

The results of this work serve as a template for community
colleges considering the adoption of specific pedagogical
approaches in the classroom or for colleges who wish to
adopt a prepared, industry-validated Al course in its entirety.
The results also highlight the effectiveness of using a blended
learning approach at the community college level.

'We recognize that the definition of blended learning varies widely in the
education community. We are less interested in constructing a strict definition,
and far more interested in whether or not the techniques are useful to students.

1. Create a class called Marine, using the Tank
class as a starting point. The Marine class
should have the following properties: name,
position, armor, and damage. That is, the
programmer should be able to initialize the
marine by performing the following:

m = Marine("Joe", (3, 2), 2, 5)

Next, add a __str__ method to this class so
that when m is printed, the following is output:

>>> print m
Joe has 2 armor and 5 damage.

He is located at (3, 2).

Submit the file marine.py.

(a) Pre-lab

3. In this section, we will work with the PredatorTank,
which is a variation of the Tank class as dis-
cussed in the text.

(a) Create a class called PredatorTank. It
should have an initialization method (__init__)
that takes in a name, health, attack,
position, and range.

(b) In-class Exercise

4. Create an air unit called Bomber. A bomber
has the following properties: name, position,
health, attack, firing range, accuracy, and
air. Since a bomber is an air unit, air should
always be set to True and does not have to be
explicitly specified when creating the Bomber.

(c¢) Homework

Fig. 1. A representative example of how class assignments carry from pre-lab
to homework.

II. COURSE SYLLABUS

This 16-week course introduces artificial intelligence
concepts with an applied focus in video game development and
has been designed to be a part of a two-year community college
program. The course is intended to be taught in a lab setting
where each student has access to a computer workstation. Upon
completion of the course, students should be able to understand
the basic concepts, and implement algorithms, for Al in games.

The objective of the course was to teach computational
thinking through game programming, so that students
could relate theoretical classroom concepts to their existing
experiences with playing video games [5]. A secondary
objective was to design a modular course structure that can
serve as a starting point for other community colleges. In this
section, we discuss the specifics of the course format as well as
the course topics. The class met once a week for 3 hours in the
evening. However, the effective class time, after accounting for
three 10-15 minute breaks as well as administrative overhead,
was reduced to approximately two hours.

A. Course Format

Grounded in Revised Bloom’s Taxonomy (RBT) [6], we
adopted a just-in-time teaching approach [2] in our course,
with some variations: we had less emphasis on web-based
materials, integrated the classroom and laboratory sessions,
and implemented blended learning by having computer
programming tasks as the focal point for all activities. Students
completed pre-lab exercises before class, completed active
learning sheets in-class, and had a homework assessment on
the related material after class.

Our pre-lab exercises were less exploratory. Instead, the
exercises explicitly tasked students with surveying the text to
remember and understand course material for the associated
class session. Because of this, they were graded on a pass/fail
basis. For example, the task in Fig. la. asks the students to
modify an existing piece of code available in their textbook
by changing a Tank to a Marine. To successfully complete
the task, the student must rename the file, rename some of
the properties, and change a single statement that prints these
properties to the screen.

The majority of in-class time was spent completing
exercises for the topic, with minimal lecturing from the course
instructor [7]. Through the use of modified’> active learning
sheets [8], students completed in-class exercises that built
upon the completed pre-lab exercises. Students were offered an
opportunity to apply their pre-lab knowledge to new problem
contexts, without introducing new material. Students would
first attempt to solve the exercises without instructor assistance.
During this time, we walked around the room to give individual
attention to students as they solved the assigned problems. This
approach was essentially an early-alert system that allowed
us to quickly assess student understanding of the material.
After 5-15 minutes, depending on exercise complexity, we
regrouped as a class and together worked toward obtaining a
correct solution. With the guidance of the instructor, students
analyzed the problems to gain insight into the relationship
between pre-lab and in-class material. Here, we provided
the rationale for the problem solutions, analyzed tradeoffs
and alternative approaches, and discussed how these materials
might be applied to games they have played in the past.
Continuing the previous example, for the task in Fig. 1b we
instructed students to implement an initialization method based
on their pre-lab, and performed the aforementioned tasks to
explain how this method relates to the programming task as a
whole.

After class, students were given a homework assignment
that was a continuation of the class topics. The homeworks
provided an opportunity to combine the concepts from class in
a novel way and in more depth. Because of increased difficulty
of homeworks, students were encouraged to work together,
but had to submit work individually. Finalizing the ongoing
example, for the task in Fig. Ic, we asked students to extend
the behavior demonstrated in class by having them create unit
types that support both air and ground modes. This required
students to modify their existing Tank firing logic because of a
constraint that Tanks can only fire on ground units (not shown).

2Instead of fill-in-the-blank type responses, our question prompts required
students to supply short answers. This style was appropriate to our course
format because we did not deliver active learning sheets within a normal
lecture as Lau [8].

TABLE 1.

INDUSTRY VALIDATED SYLLABUS FOR A 16-WEEK SEMESTER Al IN GAMES COURSE

Basic Python syntax and semantics, such as numbers, strings, variables, conditionals, loops, and functions. The list, tuple, and

Additional exercises on concepts from the previous module. Classes as a means to organize data. The game loop as building
block for all games. Basic random number generation as a means for adding variation in games.

Review of classes. Loading sprites and backgrounds; blitting (drawing) objects to the screen. Event handling and keyboard logic.

Review of list operations, importing libraries. Converting lists and tuples to NumPy arrays. Fundamentals of Newtonian Physics,
which include displacement, velocity, and acceleration. Vectors, including Cartesian coordinate systems, plotting, dot products,

Review of integer and floating point operations and subtle pitfalls. Additional practice on vector operations implemented using
simplified Newtonian Physics model from the previous modules. Game loop updates for updating avatar position. Frame vs. time

Double-ended queues, and algorithmic costs and tradeoffs for list and double-ended queue operations. Data structures, e.g., stacks
and queues implemented using double-ended queues. Static paths, as found older games, implemented through list rotations. Tile

Breath-first search implementation using nested lists as a world representation. A simplified edge finding function for locating
adjacent nodes. Discussion of generalized search with explored and frontier lists, and choice of distance functions and their
effects. Mathematical operations for quantization (translating graph nodes to pixel coordinates and back).

Review of dictionaries and how they can be used to implement Blackboard architectures. Hard-coded decision trees as sequences
of conditional statements. Five-state decision tree system involving Al that can fire on the opponent, seek the opponent, find

Review of Manhattan distance. Multiple mechanisms (references) for accessing unique objects in the context of dictionaries.
Visual comparison of decision trees and finite state machines (FSMs). Implementing FSMs in Python using object-oriented
programming. Methods as a means to add behavior to classes. FSMs as a technique to modularize Al behavior. Implementation

Review of world representations and blackboard architectures. Review of random number generators as a means to emulate
intelligence. Artificial stupidity; how games cheat to give the perception of intelligence (for example, fog of war). Implementing

Technologies that are not directly game Al but help support games in general. Recasting Al algorithms and demonstrating
applicability across domains. Finite state machines as an example of maintaining user states in a chat system. Event-based

Continuation of previous module; modifying networking code to implement a text-based online game. Discussed the limitations

of Al, and role and need for multiplayer games. The use of Al agents that can act as players.

Wrap-up of course topics in an interview context. Main take aways and course highlights at a high level. Interviewing techniques

for industry positions in entry-level game Al. Application of course topics to general programming careers.

Module Topic Learning Objectives
1 Introducing Python
dictionary data structures.
2 Exploring Python
3 Introducing Pygame
4-5 Numerical Python
Euclidean distance, and vector normalization.
6 Movement Algorithms
updates. Seek movement algorithm as a fundamental Al primitive.
7 Pathfinding 1
graphs as the basic building blocks of two-dimensional world representation.
8 Pathfinding 11
9 Decision Making I
ammo items, find health, and panic when it is out of ammo and low on health.
10 Practical Midterm Exam
11 Decision Making II
of a schoolyard game of tag through FSM behavior.
12 Learning I
finite state machines in a hide and seek game setting.
13 Supporting Technologies I
management in networks, as opposed to games, through the Twisted framework.
14 Supporting Technologies II
15 Comprehensive Final Review
16 Practical Final Exam

Students were evaluated using a midterm and final exam,
which had notable differences from evaluations most students
were familiar with. To simulate industry settings, all exams
were open-book and open-notes, and we allowed the use of the
Internet. More importantly, all problems were programming
exercises that required students to submit source code within
the 3-hour time window. Thus, no multiple choice or fill-in-
the-blank questions were employed. Students were notified in
advance of the specific subject matter to be evaluated. In much
the same way that in-class exercises were built on pre-lab
exercises, the exams provided an opportunity to independently
demonstrate learning from the in-class exercises. To our
knowledge, this exam style is still not widely used in computer
science; indeed, at the community college where this course
was taught and evaluated, it was the first within the Information
Systems department to implement these techniques.

Though many languages have been used for teaching
introductory programming [9], we chose Python because of
previous successes reported by four-year Universities and
high schools, and we expected these reported benefits to
apply equally well at the community college level [10], [11].
As presented by Grendel et al. [11], we also considered
Python’s minimal syntax, dynamic typing, expressive built-in
types, and immediate feedback to be positive factors when

considering its adoption. Most importantly, Python has an
orthogonal design that allowed us to simplify the language,
such that advanced language features, including decorators,
list comprehensions, and operator overloading, were omitted
from the course entirely.

To support game-specific features, the following additional
libraries were required: Pygame,® for abstracting low-level
game engine details (such as graphics, user input, and event
management); NumPy,* for vector operators; and Twisted,
for event-driven networking support. Students used the built-
in IDLE editor to write their Python programs, using simple
print statements when debugging was necessary. All of the
software used in the class is open source and therefore freely
available to the students for use at home. In short, we offered
a general-purpose programming language that was loosely
coupled with the underlying game engine library so that the
concepts learned in the course could easily transfer to other
programming environments.

3http://www.pygame.org
“http://www.numpy.org/
Shttp://twistedmatrix.com/

Fig. 2. Students experiment with avatar movement. The boy is controlled
using the keyboard by the player and the girl is an Al agent.

B. Course Topics

The course used two textbooks. The first textbook was
Python-specific and introduced the students to the Python
programming language from a games perspective and the
Pygame framework [12]. Throughout the course, this book
was largely used as a reference. The second was an
Artificial Intelligence (AI) textbook used in many four-year
undergraduate programs [13]. Despite the fact that the Al
text was not specifically designed for the community college
level,® we hoped that its comprehensive coverage would allow
students to continue pursuing their interests in game Al well
after the completion of the class. As mentioned in Section
II-A, class sessions assumed that students had read the text
beforehand.

An overview of the topics can be found in Table 1. We
tried to strike a balance in course topics that satisfied the
needs of the industry, but at the same time was appropriate for
the capabilities of community college students. We presented
traditional computer science algorithms through a game-
focused lens. As one example, rather than offer a theoretical
coverage of vectors as an abstract mathematical construct, we
motivated the need for vector operations as a practical method
to simplify AI movement in games programming. As another
example, rather than directly cover the concepts of stacks and
queues, we motivated the need for these data structures through
their use in Al pathfinding, a staple of games. Throughout the
course, we emphasized analyzing tradeoffs between different
data structures, such as lists, tuples, and dictionaries. Nested
lists were found to be most suited to representing a tile-based
world; tuples were useful in representing coordinates; and
dictionaries were useful in storing agent properties that needed
to be accessed by a key (such as a player’s health or ammo).

It was important to us that concepts in the course be
cumulative because we felt that students could appreciate
their efforts if they could tangibly see how their simpler
implementations could be reused to develop more complex
components. For example, students implemented tuples so that
they could implement distance functions. Distance functions
were used to implement seek behaviors, which were then used
in their implementation of path finding, which is then used
within finite state machines to move toward different goals, and
so on. Concretely, we began with a simple environment devoid
of obstacles and a world representation, as shown in Fig. 2.

5The book assumes a moderate knowledge of mathematics. Additional class
time may be required to cover these pre-requisites.

P Health 96 Ammo 14

E Health 70 Ammo 16 | Seek

Fig. 3. Students implement a finite state machine in a tile-based world.
Colored tiles are obstacles and hiding places for the player. Small red
(bottom left) and green (bottom right) rectangles are ammo and health items,
respectively, which provide opportunities for the AI to perform additional
decision making.

Students used this environment until Module 7: Pathfinding
I (see Table I) as a platform for reinforcing mathematical
foundations as well as developing their programming language
skills. When the simpler environment representation became
insufficient for expressing advanced concepts, students moved
to a more complicated representation as shown in Fig. 3. The
latter representation provided affordances for discussing more
sophisticated topics that required a world model, and was used
for the remainder of the course.

III. METHODOLOGY

Student data was collected anonymously in full accordance
with research protocols at the authors’ respective institutions.
Students did not receive extra credit for participating in the
study. The course consisted of n = 18 students (17 male, 1
female), but student data was discarded for students under the
age of 18, and for students who did not consent to releasing
their data. The course was offered as an elective, and students
self-selected to enroll in the course, which is a potential bias.

To identify changes in student attitudes, students completed
the Moskal’s Attitudes Toward Computer Science survey [4],
once immediately before the core AI component of the
course and again at the end of the semester. The purpose
of this qualitative instrument is to better understand factors
that discourage students from pursuing degrees in computer
science. The survey measures attitudes across five constructs:
confidence, interest, gender, usefulness, and professional.
Because of student demographics, the gender construct
questions were removed from the survey. To score the survey
results, the 4-point Likert-item survey responses are re-coded
to a numerical scale which ranges from 1 to 4; negatively
phrased questions were reverse coded such that a high score is
always a positive attitude. The score for a construct is simply
the sum of the responses for that construct.

To reflect on their own learning preferences, students
also completed a Felder-Soloman Index of Learning Styles
(ILS) questionnaire [3] at the end of the tenth class session.
This is a 44-question instrument that can be used to
assess preferences on four dimensions: active/reflective (ACT-
REF), sensing/intuitive (SEN-INT), visual/verbal (VIS-VRB),
and sequential/global (SEQ-GLO). The scoring methodology
categorizes students for each of these dimensions ranging
through, for example, Strongly Active, Moderately Active,

TABLE II. ATTITUDES TOWARD COMPUTER SCIENCE SURVEY
Construct

Confidence Interest Usefulness Professional

p=0.362 p=0.011 p=0.172 p = 0.037
Student Pre Post Pre Post Pre Post Pre Post
SA 28 29 36 40 24 24 16 16
SC 28 27 35 38 24 24 13 13
SD 28 29 35 37 21 24 7 16
SE 23 29 30 40 18 24 11 13
SF 20 16 18 22 18 18 10 12
SJ 23 26 27 38 22 24 11 11
SK 29 23 36 32 24 18 12 13
SL 29 29 29 32 22 23 14 12
SP 23 27 25 34 17 21 11 16
SQ 28 28 36 40 24 24 12 15

Balanced, Moderately Reflective, and Strongly Reflective.
For this research, we compared the ILS distributions
for each dimension against a typical four-year University
CS1 program [14], to determine if statistically significant
distributional differences exist between two-year and four-year
populations.

To evaluate perceptions of the course, students completed a
13-question final evaluation consisting of 5-point Likert-type
items. We provided this to the students directly before their
final exam.

To validate if the course is relevant and useful to industry,
we conducted four semi-structured, in-person interviews with
game companies within the Raleigh, North Carolina area. The
structure was as follows: a discussion about the course topics,
the choice of Python as a programming language, and the
blended learning approach of the class. The interviews were
conducted over four months, and each session ranged from
1.5 to 3 hours. The first author was both the instructor and
interviewer, which may have resulted in social desirability bias.

IV. STUDENT-CENTRIC RESULTS

In this section, we discuss the results of the Moskal’s
Attitudes Toward Computer Science survey [4], the Felder-
Soloman Index of Learning Styles questionnaire [3], and the
course evaluation.

A. Attitudes Toward Computer Science

Computer games have been cited as a motivational tool
to teach Computer Science concepts [15]. Consequently, we
were interested whether students who completed an Artificial
Intelligence in Games course would have a positive increase in
their attitudes toward Computer Science. Students completed
Moskal’s Attitudes Toward Computer Science instrument [4]
directly before the AI component of the course, and again at
the end of the semester. Students were randomly assigned a
unique identifier, and the results for students who completed
both pre-test and post-test surveys are shown in Table II.
A Wilcoxon matched pairs signed-rank test was performed
between the two trials, and constructs for students’ interests
in CS (W(10) = 25, p = 0.011) and students’ beliefs about
professionals in CS (W(10) = 49.5, p = 0.037) increased
significantly.

Since students take many courses during a semester, it
should be noted that there are several confounding factors

TABLE III. INDEX OF LEARNING STYLES AGGREGATED SURVEY
RESULTS, COMPARING OUR AI CLASS WITH A 4-YEAR CS1 CLASS

Dimension (A-B)

ACT-REF SEN-INT ViIs-VRB SEQ-GLO

p=0.234 p=0484 p=0.356 p=0.054
Preference Al CSl1 Al CSl1 Al CS1 Al CSl1
Strong-A 1 13 0 24 4 64 0 8
Moderate-A 3 56 4 53 7 80 3 49
Balanced 7 123 6 101 1 70 6 139
Moderate-B 1 24 2 31 2 28 4 20
Strong-B 2 6 2 13 0 12 1 2

that prevent us from attributing this affect to our course alone.
There is also a survivorship bias, in that students who dropped
the course before the final survey did not complete both
surveys. It is indeed plausible that students who dropped the
class had negative attitudinal changes. However, when taking
into account the student evaluations, we believe that some
component of these positive attitudinal changes were a result
of our course.

B. Index of Learning Styles

We hypothesized that one of the differences between
community college students and traditional University students
was that the two student populations have significantly
different learning styles, and that these differences can be used
to inform the pedagogical approaches in the class. To evaluate
this hypothesis, we compared our results against a student
population from an Introduction to Computer Science course
at a four-year University [14]. Due to the small number of
students in our Al class, Fisher’s exact test was applied. These
results are shown in Table III. We were unable to identify
any statistical differences between the two populations, though
SEQ-GLO appears to be on the threshold of significance. Thus,
as with the CS1 population, a Shapiro-Wilk normality test
reveals that, for all dimensions, we were unable to reject
student populations as significantly different from normal (all
p > 0.05). Consequently, our interpretation of this result is
that pedagogical approaches that are explicitly based on ILS
can potentially be applied with success in community colleges.

C. Student Evaluation

We had 18 students initially enroll, 4 of whom dropped
before the final exam. One student did not complete the
final evaluation. Though our reports reflect some level of
survivorship bias, our course retention rate of 78% is
comparable to the Simulation and Game Design program
average retention rate (78%).

We expected a progression in student perception of
difficulty, with the pre-lab exercises being easiest and the
midterm exam being most difficult. Using the Wilcoxon
matched pairs signed-rank test, we were unable to find any
statistical significance to confirm this expectation. We believe
that this is in part due to the small number of students.
Qualitatively, we observe a monotonic increase in difficulty
between the in-class exercises and the out-of-class homework.
Our explanation for this is that students receive help during
class from the instructor.

10 out of 13 students (77%) felt that the practical exam
format was appropriate or very appropriate and that they would

TABLE IV.

STUDENT EVALUATION AGGREGATED RESPONSES

Likert-item Counts

Qn Question Text Scale 2 3 4 5

Ql The following question asks you to rate the difficulty of the course materials. Very Difficult—Very Easy
How difficult were the questions for the pre-lab exercises? 5 8 - -
How difficult were the questions for the in-class exercises? 5 5 3 -
How difficult were the homework assignments? 8 4 1 -
How difficult was the midterm exam? 5 5 1 -

Q2 How often did you read the textbook material before coming to class? Never—All of the Time 5 4 3 -

Q3 How often did filling out the in-class exercises cause you to miss important parts of the lecture? =~ Never—All of the Time 4 3 2 -

Q4 The midterm exam was a practical exam. How appropriate was this exam format for this Very Inappropriate—Very Appropriate 1 2 4 6
course?

Q5 If given the option, to what degree would you avoid or prefer this exam format for future =~ Very Strongly Avoid—Very Strongly Prefer - 3 5 5
exams?

Q6 During class, the instructor would go to each student to check their progress during in-class ~ Very Useless—Very Useful - 1 2 10
exercises. How useful were these one-on-one interactions with the instructor?

Q7 This course used a blended learning classroom approach. If given the option in your future ~ Very Strongly Avoid—Very Strongly Prefer - 5 3 5
classes, would you avoid or prefer classes that used this teaching style?

Q8 Please indicate your level of agreement with the following statements. Strongly Disagree—Strongly Agree
The in-class exercises encouraged me to attend the lectures. - 1 1 5 6
The in-class exercises make the lectures interesting. - - 2 7 4
The in-class exercises helped me better understand the lecture material. - 1 1 3 8
The in-class exercises helped me complete the homework. - - 2 5 6
The assigned textbook was a useful resource in the class. - 3 5 3 2

Q9 This course used the Python programming language for all programming activities. How Very Difficult—Very Easy 1 3 4 4 1
difficult or easy was it to learn the Python language?

Q10 For future programming tasks, how likely would you be to use Python as your preferred Very Unlikely—Very Likely - 2 3 4 4
language?

Ql1 How important do you feel the material in this class is in obtaining an entry-level game Not at all Important—Extremely Important - - 3 6 4
developer position in industry?

Q12 Compared to other classes that you have taken at this community college, how would you One of the Worst—One of the Best - - 3 1 9
rate this course?

Q13 Overall, how satisfied were you with this course? Very Dissatisfied—Very Satisfied - - 3 3 7

prefer this exam format for future exams. More importantly, 8
out of 13 students (62%) strongly or very strongly preferred
the blended learning approach to class. The other 5 out of 13
students (38%) were indifferent, and no students indicated that
they would avoid this class format.

12 students (92%) found the one-on-one interactions with
the instructor to be useful, despite having only a few minutes
of interaction time with the instructor for each exercise. In
our opinion, this is because the instructor could quickly steer
otherwise perplexed students in the correct direction.

The department allows students to have up to 4 penalty-
free absences before being dropped from the course. Of the
13 students who completed the course, 6 absences in total
were recorded across all students, and 8 students had perfect
attendance. 11 students (85%) agreed or strongly agreed that
in-class exercises encouraged them to attend the lectures,
reported that the exercises made the lectures interesting,
and reported that the exercises helped them complete the
homework. Thus, if students did not find class to be useful, we
would have expected many more students to have absences.

10 students (77%) believed the class was very or extremely
important in obtaining an entry-level game developer position,
which shows that students perceive the course as being
relevant. 9 students (69%) rated this course as one of the
best they have taken at our community college. In general,
10 students (79%) were satisified or very satisfied with the
course.

V. INDUSTRY COURSE EVALUATION RESULTS

The selected companies constitute what we believe to be a
representative sampling from the diverse types of game studios
in the marketplace: Redstorm (RS),” for traditional AAA
game development; Vicious Cycle (VC),® for game engine
design; Virtual Heroes (VH),? for serious research games;
and Spark Plug Games (SP),!° for mobile and independent
game development. Programmers who directly worked with
Artificial Intelligence in some capacity within their company
evaluated our curriculum and contributed feedback for three
measures: selection and ordering of topics, choice of Python
as a programming language, and the use of blended learning.

With few exceptions, all four companies found the course
topics and topic organization to be appropriate to the game
industry. When we designed the course, we envisioned the
sections on Supporting Technologies as optional, but all
of the interviewed companies felt that this section was
necessary to show how game programming concepts can
transfer to other programming domains. However, VC felt
that Supporting Technologies should only be a single class,
using the gained class time on Learning in Al. RS suggested
that students should implement a simple, but complete game
(such as Asteroids or Pacman), rather than using prototype

http://www.redstorm.com
8http://www.viciouscycleinc.com
9http://www.virtualheroes.com
10http://www.sparkpluggames.com

environments. Decision trees and finite state machines were
considered to be an essential topic for all companies, but they
differed on the importance of pathfinding. RS suggested that
the topics of decision trees and pathfinding be reversed, since
pathfinding is a relatively complex topic. Specifically, RS,
VC, and VH indicated that all modern game engines support
pathfinding, and that breadth-first search could be covered in
less detail or abstracted entirely as a result. VC and VH also
indicated that the concept of navigation meshes should be
presented as an alternative to navigation points.

We were concerned that our course did not make use of
an industry game engine, such as Unity.!! However, the use of
Python and Pygame was well-received by all companies. From
our interviews, it was clear that companies are less interested in
knowledge of particular tools and more interested in students’
programming capabilities. For example, RS was interested
in whether students understood the thought process behind
programming and VH was similarly interested in students who
have a base-level knowledge of programming. SP liked Python
because it allowed students to focus on concepts, as opposed
to focusing on language idiosyncrasies. In terms of entry-
level opportunities, RS liked the use of Python because they
considered scripting to be a stepping stone into other areas;
their entry-level developers begin as scripters. VC entry-level
hires also begin in a scripting or support role, and thus found
Python to be appropriate. At VH, all entry-level hires start out
as generalists, and at SP, their game programmers work on all
aspects of the game. Thus, we conclude that teaching through
Python is not a significant barrier to entering the game industry,
and we recommend that community colleges examine their
balance between tool-focused courses and concept courses.

All companies found the blended learning approach to the
classroom to parallel the type of work performed in industry.
RS liked the interactivity of the course, and how it built
on concepts from first principles. VH felt that the course
format accurately resembled the way that game programmers
solve problems in industry. VC stated that having immediate
feedback is valuable, and that the course offered several
opportunities to practice debugging code — an essential skill.
The practical midterm and final exam formats were also well-
received. In general, companies preferred the problem-based
learning format to lecture-based learning. In our interviews,
we found that companies are interested in what projects
students have completed more than the courses they’ve taken.
In particular, SP liked that the course provided students with
deliverables that could be discussed during interviews. VH
also indicated that it was very important for students to have
completed projects when applying for entry-level positions.

VI. CONCLUSION

While we have shown a positive increase in attitudes within
the interest and professional constructs, we are unable to
isolate these increases to our course alone. Future replications
of this course may mitigate some of these confounding
factors. The results of our final class evaluation demonstrate
that by having a blended learning approach, no students
are marginalized when compared with alternative classroom
formats, but a significant number of students stand to have an

Uhtp://unity3d.com/

improved experience. Finally, our industry interviews suggest
that game companies prefer a blended learning approach to
a traditional lecture because it more closely matches their
industry practices.

ACKNOWLEDGMENTS

The authors would like to thank Steve Reid (Managing
Director and Executive Vice President) and Greg Stelmack
(Expert Game Systems Engineer) of Redstorm Entertainment,
an Ubisoft Entertainment company; Wayne Harvey (Vice
President/CTO), Allan Campbell (Gameplay Programmer), and
Alfred McNulty (Gameplay Programmer) of Vicious Cycle;
Jerry Heneghan (Director of Product Development) and Oliver
Gray (Computer Game Programmer) of Virtual Heroes; and
John O’Neill (President/CEO) of Spark Plug Games for their
expertise and feedback.

REFERENCES

[1] P. Smittle, “Principles for Effective Teaching in Developmental
Education.” Journal of Developmental Education, vol. 26, no. 3, pp.
10-16, 2003.

[2] T. Bailey and J. Forbes, “Just-in-time teaching for CS0,” ACM SIGCSE
Bulletin, vol. 37, no. 1, p. 366, Feb. 2005.

[3] R. Felder and J. Spurlin, “Applications, reliability and validity of
the Index of Learning Styles,” International Journal of Engineering
Education, vol. 21, no. 1, pp. 103112, 2005.

[4] A. Hoegh and B. M. Moskal, “Examining science and engineering
students’ attitudes toward computer science,” in 29th IEEE Frontiers
in Education Conference, Oct. 2009, pp. 1-6.

[S] A. Lenhart, J. Kahne, E. Middaugh, A. Macgill, C. Evens, and J. Vitak,
“Teens, Video Games, and Civics: Teens,” Pew Internet & American
Life Project, 2008.

[6] D. R. Krathwohl, “A revision of Bloom’s Taxonomy: An overview,”
Theory into Practice, vol. 41, no. 4, pp. 212-218, Oct. 2002.

[7]1 P. Carter, “An experiment with online instruction and active learning in
an introductory computing course for engineers,” in Proceedings of the
14th Western Canadian Conference on Computing Education - WCCCE
’09. New York, New York, USA: ACM Press, May 2009, p. 103.

[8] K.-K. Lau, “Active learning sheets for a beginner’s course on reasoning
about imperative programs,” ACM SIGCSE Bulletin, vol. 39, no. 1, p.
198, Mar. 2007.

[9] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen,
M. Devlin, and J. Paterson, “A survey of literature on the teaching
of introductory programming,” in Working Group Reports on ITiCSE
on Innovation and Technology in Computer Science Education, ser.
ITiCSE-WGR °07. New York, NY, USA: ACM, 2007, pp. 204-223.

[10] D. Ranum, B. Miller, J. Zelle, and M. Guzdial, “Successful approaches
to teaching introductory computer science courses with Python,” in
ACM SIGCSE Bulletin, vol. 38, no. 1, Mar. 2006, p. 396.

[11] L. Grandell, M. Peltomiki, R.-J. Back, and T. Salakoski, “Why
complicate things?: Introducing programming in high school using
Python,” in Proceedings of the 8th Australasian Conference on
Computing Education, Jan. 2006, pp. 71-80.

[12] W. Mcgugan, Beginning Game Development with Python and Pygame:
From Novice to Professional. New York, NY: Apress, 2007.

[13] 1. Millington and J. Funge, Artificial Intelligence for Games, Second
Edition, 2nd ed. Burlington, MA: Elsevier, 2009.

[14] J. Allert, “Learning style and factors contributing to success in
an introductory computer science course,” in IEEE International
Conference on Advanced Learning Technologies, 2004, pp. 385-389.

[15] D. Cliburn, “The Effectiveness of Games as Assignments in an
Introductory Programming Course,” in The 36th Annual Frontiers in
Education Conference, 2006, pp. 6-10.

