
Fork It: Supporting Stateful Alternatives in Computational
Notebooks

Nathaniel Weinman
nweinman@berkeley.edu

Microsoft Research/UC Berkeley

Titus Barik
titus.barik@microsoft.com

Microsoft Research

Steven M. Drucker
sdrucker@microsoft.com

Microsoft Research

Rob DeLine
rob.deline@microsoft.com

Microsoft Research

What if
instead…

Figure 1: A user makes progress in a notebook (left) to test a hypothesis. They then wonder how an alternative approach may
have worked out (middle). They fork their existing code in the middle of their notebook, starting their new exploration next
to the old (right).

ABSTRACT
Computational notebooks, which seamlessly interleave code with
results, have become a popular tool for data scientists due to the
iterative nature of exploratory tasks. However, notebooks provide a
single execution state for users to manipulate through creating and
manipulating variables. When exploring alternatives, data scientists
must carefully create many-step manipulations in visually distant
cells.

We conducted formative interviews with 6 professional data
scientists, motivating design principles behind exposing multiple
states. We introduce forking — creating a new interpreter session

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445527

— and backtracking — navigating through previous states. We im-
plement these interactions as an extension to notebooks that help
data scientists more directly express and navigate through decision
points a single notebook. In a qualitative evaluation, 11 professional
data scientists found the tool would be useful for exploring alter-
natives and debugging code to create a predictive model. Their
insights highlight further challenges to scaling this functionality.

CCS CONCEPTS
• Software and its engineering→ Development frameworks
and environments.

KEYWORDS
Alternatives, computational notebooks, exploratory programming,
code history

ACM Reference Format:
Nathaniel Weinman, Titus Barik, Steven M. Drucker, and Rob DeLine. 2021.
Fork It: Supporting Stateful Alternatives in Computational Notebooks. In
CHI Conference on Human Factors in Computing Systems (CHI ’21), May
8–13, 2021, Yokohama, Japan. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3411764.3445527

https://doi.org/10.1145/3411764.3445527
https://doi.org/10.1145/3411764.3445527
https://doi.org/10.1145/3411764.3445527

CHI ’21, May 8–13, 2021, Yokohama, Japan Weinman et al.

1 INTRODUCTION
Data scientists engage in exploratory practices to understand data,
to form and test hypotheses and to build predictive models [2, 6, 13].
Computational notebooks, like Jupyter, Databricks or Colab, are
popular tools to support this work [21]. Notebooks present a flexible
scripting environment for exploratory programming by providing
the user with an arbitrary number of small editors, called cells,
whose contents are submitted to an ongoing interpreter session.
These cells can freely be visually reordered. The textual or visual
results of a cell’s code are presented directly below the cell. This
interleaving of scripting code, visual results, as well as documenta-
tion in markdown, create a form of literate programming [15] that
helps data scientists explain their work.

However, this same flexibility often leads to “messy” notebooks
[9, 12]. Because cells are the only way to work with the interpreter,
a data scientist will clutter the notebook with many cells of short-
term value, for example to explore how a library function is called
or to construct a temporary view of the data. At a larger scale,
data scientists also explore many different decisions when working
with their data [16], like different feature transformations, model
attributes, or experimental design.

Exploring these longer-term alternatives often involves imper-
atively updating the interpreter’s state. For example, to train a
predictor, a data scientist might remove the outcome column from
a table to ensure that it plays no part in training. Once the column
is removed, the only way to recover it is to execute previous cells to
reload the table. The most popular scripting languages, like Python,
are also imperative. Exploring alternatives often involves assigning
new values to variables. Whatever value the variable previously
held is lost and can only be recovered by rerunning the code that
generated the value (if that code still exists in the notebook). In
contrast to previous research focused on the messiness of flexible
cell executions [9, 12, 23], we address the messiness of polluting a
single shared interpreter session.

We introduce a tool supporting two new interactions, forking
and backtracking, that provide the user with multiple interpreter
sessions in a notebook. Our tool allows the user to fork a new in-
terpreter session, either from the current execution state or any
previous execution state. That is, the user can either plan ahead to
explore alternatives or can retroactively discover the need (which
we call backtracking). The user interface presents these alternatives
side by side, to allow ready comparison of their results. In a set
of formative interviews we conducted with six professional data
scientists, the most frequent need they described is better support
for exploring alternatives. In a qualitative evaluation with 11 pro-
fessional data scientists, we found that forking largely supports
their needs and elicited additional requirements for the tool. Our
contributions are as follows:

• The design and implementation of a tool providing data
scientists access to multiple programming states within a
single computational notebook.

• A usability study to provide insights into the uses and us-
ability of managing multiple programming states.

2 RELATEDWORK
2.1 Exploration in Notebooks
Data scientists explore a diverse set of hypotheses, theories, data,
methods, and visualizations in their tasks, an example of Pirolli and
Card’s sensemaking framework [20]. Kery and Myers [13] observe
how data scientists and other programmers engage in exploratory
programming, or “open-ended tasks where a program’s behavior
cannot be specified in advance.” They propose a framework for
how programmers engage in this practice, finding many gaps in
current tool support around sensemaking. Liu et al. [16] focus on
the many decision points data scientists make to explore or revisit
certain alternatives. They propose a framework for the triggers as
well as the barriers to data scientists exploring alternatives given
current tools, identifying opportunities for tools to better support
this crucial behavior. When communicating the process of an explo-
ration, the linear view of notebooks does not naturally lend itself
to implicitly convey the explored decision points [14]. Interview
studies have further found that these decision points are often not
even explicitly documented [1, 10].

Notebooks are popular because the combination of iterative
scripting and inlined visualizations supports sensemaking. How-
ever, this same support for iteration can cause challenges when data
scientists want to explore alternatives. Wilson et al. [26] observe
that one of the biggest challenges data scientists face is the inability
to revert code. They propose notebook users leverage version con-
trol systems to address this challenge, though Kery et al. [12] find
that formal version-control systems are too heavy-weight for data
scientists. Instead, data scientists find work-arounds. Kery et al. [11]
find that, in traditional programming environments, data scientists
keep old versions of their code in comments. This requires them to
keep a mental map of which variations have been tried and how
those variations map to individual code snippets. In a later study,
Kery et al. [14] found data scientists exploring alternatives by repli-
cating code across many cells and then later refactoring—another
tedious and error-prone work-around.

Rule et al. [23] explore the tension between using notebooks for
exploration (overwriting cells, exploring many alternatives) and
explanation (providing a clean, carefully maintained narrative) by
analyzing two large sets of notebooks and conducing interviews
academic data analysts. They highlight the importance for tools
to better support organization without much additional effort to
the data scientists. In particular, they note the limitations of the
linear style of notebooks. As previous studies document the need
for better support for exploring alternatives, we included a focus
on these explorations in our formative interviews.

2.2 Support for Revisions in Notebooks
Because of the rapid iteration in exploratory data analysis, data
scientists often want to return to previous versions of their work.
Researchers have created various kinds of support for this need.
Mikami et al. [17] present a micro-versioning tool focused on sup-
porting experiments in exploratory programming. They explore
how to provide an effective way for users to make sense of the code
they are undoing, creating a hybrid of regional and tree-structured
undo models. Janus [22, 23] allows users to hide cells and view
previous versions of cells. Verdant [12] allows data scientists to

Fork It: Supporting Stateful Alternatives in Computational Notebooks CHI ’21, May 8–13, 2021, Yokohama, Japan

navigate through previous versions of a notebook, through Git-like
functionality. Gather [9] supports users in producing the ordered,
minimal code to reproduce chosen results in the notebook. While
these tools focus on organizing and exploring the history of the con-
tent of the notebook, forking and backtracking focus on organizing
and recovering the execution state.

2.3 Non-Linear Presentations
Researchers have developed a range of tools to support visual rep-
resentations of code organization beyond traditional file structures.
Hartmann et al. [8] presented Juxtapose, a tool with a runtime envi-
ronment that executes partially linked code variants in parallel and
displays their outputs in a grid. Bragdon et al. [3] presented Code
Bubbles as a tool to improve code comprehension. It allows the user
to use lightweight, editable fragments called bubbles to group and
organize code fragments. Nelson et al. [19] extend this idea beyond
code artifacts, proposing stackable cards as a helpful way of dynam-
ically organizing artifacts at different levels of abstraction, such
as code, design documents, task lists, email messages, and more.
In Debugger Canvas [5], the user navigates through parallel call
paths in a debugging session. The focus on stepping into parallel
call paths begins to expose a tree-like structure to the user as they
make sense of the execution of their code. We take inspiration from
these previous non-linear presentations of code when we present
forks side by side.

3 FORMATIVE INTERVIEWS
We interviewed 6 professional data scientists (F1–F6) at Microsoft,
a large, data-driven software company. Participants had 2.5–15
years of experience. The interview lasted 60 minutes, for which
informants were compensated $25. We structured the interview
around several potential extensions to notebooks. The informants
were most enthusiastic about tools that break the single linear
(possibly out of order) model of notebooks. These semi-structured
interviews yielded several key ideas that yielded design principles
for our tool.

3.1 Current Pain Points
Data scientists regularly explore different hypotheses, or “alterna-
tive universes” [F3]. As notebooks do not directly support these
alternatives, the informants had developed strategies to manage
this mismatch between their conceptual process and the notebook
model. However, they described these strategies as “laborious, gross”
[F4] and “hodgepodge” [F2].

One strategy data scientists employ is being careful in organiz-
ing their notebooks and naming variables. However, F4 notes that
one “only learns that discipline by being burned a few times.” F2
rigorously documents their notebooks, trying to ensure that if they
view it again a year later, they will be able to understand their logic.
F4 uses markdown cells to distinguish different hypotheses, and
“if they’re going to work on hypothesis 1 again...they rerun all of
hypothesis 1” to ensure all variable values are correct, even if the
computation is time-intensive. F6 carefully names their variables,
ending up with “either uninformative names like df_1 and df_2, or
increasingly onerous names like df_no_personality”. Even with
this strategy, however, they often “forget about the names and then

have to go up and reread how they defined it.” Though these in-
formants experienced the same limitations of the notebook, they
came up with distinct coping strategies.

Even with careful organization, understanding what differs be-
tween two hypotheses is difficult without careful documentation.
F4 uses markdown cells to distinguish different hypotheses, and
they’ll “be subtly different from other hypotheses but good luck
finding where”. F5 “ends up having clones of so many notebooks of
different approaches where the only diff on them is the last 2–10
cells”, which they then have to carefully refactor to keep intended
parts consistent.

3.2 Expressing Alternatives
There are many stages to data science tasks, such as cleaning data,
engineering features, training models, and evaluating models [2].
Data scientists often explore multiple alternatives for some of these
stages, such as “trying a bunch of different models and parame-
ters to find which one works right” [F5]. However, when trying
different models, the work in previous stages, like cleaning data
and engineering features, is shared among all of the models.

The informants underscored the importance of exploring alter-
natives along with current limitations. F3 notes that “the process
just isn’t linear. There’s a logical branching of what you’re doing
where you’re comparing two alternative universes.” F6 reinforces
the prominence of alternatives in their workflow, “where they have
to try three different things in order to know what’s the better
choice”. F5 echos this sentiment, saying data scientists “try a bunch
of different models and parameters and find which one works right.”
F4 highlights a particular challenge of current notebooks, that when
a particular approach “is bad, which happens often, they’d like to
delete it and go to what they had before without” having to “run
many cells again” as a type of “undo magic for the three different
cells” which explored the now debunked approach. In short, infor-
mants expressed the need for a direct way to explore alternatives.
We use the term fork for this, based both on the common idiom
of “a fork in the road” and more technically the Unix concept of
a process fork, which replicates execution state. We avoid branch,
since many data scientists use branches in Git, which is both more
complex (e.g., merging) and does not involve execution state.

3.3 Execution History
Data scientists iterate with their data, often using the results of
some analysis to decide on relevant alternatives to try [2, 18]. It is
not uncommon for data scientists to analyze the false positives and
negatives of a model to determine the next model they might try.
For example, F2 recalls times when they thought “they didn’t need
some columns and then [several cells later] realized that they do” for
a new hypothesis. In current notebooks, data scientists sometimes
try to organize their notebook so that it will work as expected if
cells are run in a fresh kernel from top to bottom. However, it is
challenging to keep notebooks in such a clean state [9].

In the context of forks, this suggests that data scientists would
benefit from being able to “backtrack”, or move back up the tree,
to create new forks and explore alternatives such as modifying a

CHI ’21, May 8–13, 2021, Yokohama, Japan Weinman et al.

cell and rerunning the cells below it. The data scientists we inter-
viewed further expanded on how they might use this functional-
ity to address any type of regrettable code. F3 thinks of it “like
a time machine,” returning to “how it was supposed to be before
they...messed it up.” F5 often “wants to go back a couple cells be-
cause they borked the data in some way that is difficult to revert”.
F5 uses git to “check in their code constantly” precisely to go back
to previous code. Some tools, such as Databricks 1, partially address
this by automatically checkpointing the visual layout of notebooks
to allow users to return to previous versions. However, users must
rerun all relevant cells as it does not save execution state—an im-
possible task, if critical code cells have been overwritten or deleted.
Allowing data scientists to return to previous states both fits their
reported work style and overcomes difficulties due to overwritten
or deleted cells.

3.4 Visualizing Alternatives
Forks provide independent execution states on different paths. How
should a fork be represented in the notebook user interface, espe-
cially since the existing layout (in particular, cell ordering) does
not reflect the execution state? Two informants lamented at how
it is “a big pain to be constantly scrolling back and forth” [F3]
between competing hypotheses, as notebooks layout all cells in a
single column. F1 notes that they wish they “were able to do their
visualizations side by side rather than having to them in individual
cells” to more easily compare them. F6 encourages a side-by-side
view, as “visually you know it’s two different paths”. In short, we
chose a side-by-side layout for fork paths.

4 EXAMPLE USAGE SCENARIO
We describe a short scenario to convey the experience of using our
forking and backtracking tool in a Jupyter Notebook. Lily is a data
scientist who uses Jupyter Notebooks in Python. She is performing
exploratory data analysis to build a model that can predict song
genres, based on a large data set. This section shows how this tool
helps her organize, explore, and communicate her findings during
data analysis.

Lily begins by importing relevant libraries and loading her data
set. After loading the data, she begins her exploration. She plots
distributions of columns, explores correlations, and investigates
missing values. Several cells and some expensive computation later,
she is now satisfied with her preliminary understanding of the data
and is ready to start generating some features she thinks will be
useful.

4.1 Containing Messes
Lily notices that the Track Release Date is part of the data set. This
seems like a promising predictive column, as different song genres
have been popular at different times. She wants to transform this
column from a string into the days since Jan 1, 1950. Unfortunately,
when browsing the date values, she notices that there are a few
different formats in this column. Some appear to be in MM-DD-YYYY,

1https://databricks.com/

some in Month D, Yr, some simply have the year, and more varia-
tions. She knows she has to process all of these different formats,
but is also a little rusty with datetime 2 conversions in Pandas.

Lily approaches tasks like this by iteratively writing code for
each format one at a time until all have been addressed. But, she
also wants her final notebook to have a single function that fully
handles all cases in this column to make it easier for others to read.
Lily creates a fork below the current cell, giving her two side-by-
side paths to work with. She will use the right path to experiment
across cells as she discovers the correct code and the other path to
write the final conversion function.

In both cases, Lily knows she’ll want to modify the dataframe
directly, not make a copy of it in a new variable. On the right,
she experiments writing code to handle dates first in the MM-DD-
YYYY format. After a few tries, she gets it working and verifies it by
checking some rows on the dataframe. Next, on the left path, she
writes a new function which conditionally applies the code that she
just created on the left path (Figure 2). Back on the right, she now
tries to tackle the next case in a new cell. Again, after getting it to
work and checking some specific rows, she updates her function
on the left. After repeating this a few times, she has successfully
transformed all the date formats in the dataset.

Finally, Lily runs her new functions on the left path, then plots
the distributions of her new columns. Seeing that they look identical,
she is convinced that the conversion function accurately represents
the work she did in multiple cells in the other path. Because each
fork uses its own execution state, she can be sure that her con-
version function works on the original dataset and has not been
influenced by her exploratory work in the right path. With this task
accomplished, she deletes the right exploratory path. Lily carries on
with her work, her dates properly converted and her notebook free
of the short-term explorations needed to remember the datetime
functions.

4.2 Comparing Approaches
Lily continues to transform and clean the data. Though she has been
diligent in ensuring her notebook can run from top to bottom, it
still takes quite a bit of time due to all the processing. She continues
to train and tune a random forest model. However, no matter how
she tunes the parameters, she cannot quite get the accuracy she
wants. She decides to see if a neural net model might work better.

Lily uses the backtrack dialog to browse the last few cell ex-
ecutions to get to the execution state she would use for training
the the neural net (Figure 3). In this case, it is a cell where she had
transformed Track Tempo from a numeric variable to a categorical
variable distinguishing fast and slow songs. Lily had previously
transformed this column as part of training a random forest. She
has already overwritten the original numeric column from her local
variables, and it would take some time to re-run all the cells above.
However, by backtracking, she is able to move back to the state just
before she overwrote the column.

Selecting a state in the backtracking dialog creates a fork. On
the fork’s left path are all of the cells for training the random forest,
that is, those cells executed after the chosen state. On the right path
is an empty cell to allow Lily to start an alternative exploration.

2https://docs.python.org/3/library/datetime.html

Fork It: Supporting Stateful Alternatives in Computational Notebooks CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 2: An example of two forked paths. The cell on the left is being used to slowly construct a clean function that will be
part of the final notebook. The cells on the right are being used for less cautious exploration as Lily determines the correct
code.

c

a

b

d

Figure 3: The backtrack dialog, to aid users in navigating the the appropriate previous state. (a) The code from the last run
cell at the current point in history. (b) The values or summary statistics of all variables at the current point in history. (c)
Navigation arrows to move between different points of history, each click goes to the last or next executed code cell. (d) A
button to confirm that a new fork or path should be created which is backtracked to this state in history.

CHI ’21, May 8–13, 2021, Yokohama, Japan Weinman et al.

e

g

h

i

f

Figure 4: A view of the forking and backtracking tool. (e) a series of navigation buttons related to forking and backtracking. (f)
An example of the modified run counters for a cell that has been executed on 4 kernels. (g) A bounding box representing the
start of a fork with multiple paths. (h) The title markdown cell for a path encouraging the user to describe it. (i) A horizontal
scroll bar, present when there are too many paths to fit on the screen (in this case there are 3 paths).

Some of the cells from the previous alternative are still relevant,
so she copies them from the left path to the right. She then writes
new code to train and and tune her neural net. Once the neural
net is working, she compares results on the left and right paths. In
addition to accuracy, she decides to compare F1 scores. She writes
the code to compute this metric, first on the left path, then on the
right—both paths have active executions. By comparing the new
metrics, she decides the neural net is best for this task.

4.3 Communicating Decisions
After getting the above models working, Lily similarly explores a K-
nearest neighbor model, but is unable to outperform the neural net.
Though Lily has made her choice for the best performing model,
she still wants to share the alternatives that she tried. She keeps
this fork in her notebook, with clearly labeled titles indicating
which she found to be the better choice. When Lily shows her
notebook to a peer, they can clearly see the initial exploration and
pre-processing she did, followed by the decision point to use these

three models for prediction, and finally the relevant code for each
of those paths (Figure 4). This allows Lily’s peer to understand
where Lily made her decision, with a side-by-side comparison of
performance metrics. Steps that are needed only for one alternative,
like the transformation of Track Tempo for the decision tree, are
shown on only the relevant path.

5 IMPLEMENTATION
Our tool is built on Jupyter Notebooks [24], a popular open-source
computational notebook3 (Figure 4). Our tool provides users ac-
cess to multiple executions states through forks, points where an
existing execution state is copied into new, independent Python
kernels. Forking points (g) are visually represented with multiple
side-by-side sets of cells in a bounding box. Each of these sets of
cells represent a different path. Each path begins with a markdown
cell (h) with an auto-generated title to help users keep track of the
intent of each path. Paths are limited to 50% of the width of the
3https://github.com/jupyter/notebook

Fork It: Supporting Stateful Alternatives in Computational Notebooks CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 5: A close-up of forking and backtracking navigation
buttons. The top row of buttons represents what the user
sees in “normal” mode, when there is no fork. The bottom
row of buttons represents what the user sees in “forking”
mode, when there is a fork. Note that all the buttons, with
the exception of Backtrack, toggle between these twomodes.

screen to prevent them from becoming too narrow. The interface in-
troduces a horizontal scroll bar (i) if necessary to navigate between
3 or more paths.

There are two ways for users to create new forks. Firstly, they
can proactively create a fork through the Fork Paths Below button
(e). This moves all the existing cells, if any, into the left path. Using
dill4, a robust library for serializing and de-serializing Python’s
execution state, the tool saves the current execution state. It then
creates two new Python kernels, one for each path, and loads this
state into each of those kernels.

Alternatively, users can retroactively create a fork through the
Backtrack button (e). As seen in Figure 3, a modal dialog appears
that allows users to browse the history of every cell execution (c).
At each point in history, users can view the executed cell’s code
(a) and a summary of all defined variables (b). This helps users
understand the execution state to which they are navigating. Once
finding the right point in history, users can click Backtrack (d) to
create a new fork from that historic execution state. Visually, the
fork is created just above the highest cell which was undone. Our
prototype uses dill to save Python’s execution state after every cell
execution, though we discuss below how this could be made more
efficient.

After a fork is created, the user is now in “forking” mode and
cannot create any new forks. As seen in Figure 5, buttons are en-
abled and disabled depending on the mode. To keep the interface
simple, our tool only supports one fork at a time, rather than nested
forks. However, users can have an arbitrary number of paths on a
fork. Users can create a new path with the Add Path button, which
creates a new empty path from the same execution state that was
saved when creating the fork. Users can also create new paths with
the Backtrack button, moving the fork point up if necessary. Users
can delete individual paths, e.g. if they are no longer relevant, with
the Delete Path button. Alternatively, if there is a “winning path,”
such as selecting the best performing model, users can Delete Other
Paths. This will keep only the cells in the selected path and will
return the notebook to “normal” mode, allowing for future forks.

5.1 Managing Kernels
Our representation of forks, even when limiting users to a single
fork, presents interesting challenges for interpreting certain execu-
tion commands. Consider a user that has done some pre-processing
of the data, then forks to create two models. They realized they

4https://pypi.org/project/dill/

forgot to drop a column. Taking advantage of notebooks out-of-
order execution model, they add a cell before the fork to drop that
column.

In this case, our tool will execute that code on all active kernels,
clearly visualized to the user in an unobstructive way (f). Instead of
having a single run count for a cell, all run counts are prefixed with
a number representing the kernel or kernels the code was executed
on. Additionally, when forks are created, the original kernel, or
the “above-fork” kernel, is maintained in addition to the new ones
representing each path. Maintaining this “above-fork” kernel is
slightly less efficient, but smoothly supports the case where users
would update code above the fork, such as pre-processing code,
and then rerun all the cells within a path, such as transforming
the data uniquely to the target model. Due to time constraints in
developing the prototype, only the output from the “above-fork”
kernel is shown.

Additionally, some of the interviewed data scientists try to keep
their notebook organized by occasionally using “Restart & Run All”,
which resets the execution state and runs the cells sequentially
from top to bottom and ensuring the results do not change. This is
a common technique to ensure notebooks are reusable. To support
similar functionality, several hidden cells are added when forks
are created. Just before each fork, a cell saves the current state of
the “above-fork” kernel to a file. At the start of each path, a cell
loads that file. This way, any non-deterministic functionality in the
code before a fork, such as sampling rows of a data set, remains
consistent between all paths if a user selects “Restart & Run All” or
similar commands.

5.2 Future performance optimizations
As one participant noted, they’re often working with data so large
that they “can’t fit even 3 copies of the data in RAM”. There is a
major limitation of our current tool around scalability, as it saves
slightly compressed representations of state for every single cell
execution. For the purposes of our study, this was not an issue,
as our data sets were sufficiently small. However, this limitation
would have to be addressed for actual deployment.

Though we did not address it in our prototype, we note several
ways to optimize the tool. First, the tool could leverage Ambrosia
[7], which provides “virtual resiliency,” namely, distributed, per-
formant support that could be used to externally save and load
varying checkpoints of environment state. Alternatively, we could
optimize this with techniques such as program slicing [25], a static
analysis technique which identifies which lines of code contribute
to the current value of a variable. Program slicing could be used to
intelligently analyze which variables were modified to store only
modified variables instead of entire execution states from each cell
execution. Similarly, for structured data, like tables, we could store
only differences in state rather than entire copies. Of course, such
optimizations are not worth the effort until the tool has been proven
to be valuable to users.

6 QUALITATIVE EVALUATION
We designed a usability study to explore how participants leverage
forking and backtracking in an exploratory predictive task. The
study was designed to answer the following research questions:

CHI ’21, May 8–13, 2021, Yokohama, Japan Weinman et al.

• How do participants use forking in exploratory data tasks?
(Section 7.2)

• How do participants use backtracking in exploratory data
tasks? (Section 7.3)

• What are the key challenges to scaling to more complex
tasks? (Section 7.4)

• How effective is the tool in supporting the original design
motivations? (Section 7.5)

We invited 200 randomly selected data scientists at Microsoft, a
large, data-driven software company. Participants were required
to have at least one year of familiarity with Jupyter Notebooks
and to have familiarity with the sklearn5, a popular Python library
for machine learning. We recruited 11 participants (P1–P11, 23–46
years of age, 3–28 years of experience). Seven participants reported
notebook use every day, one every other day, two once a week, and
one did not report. Participants were compensated $25/hour for
their time.

Each 90-minute session began with the participant signing a
consent form. The session then consisted of two tasks to build pre-
diction models. For the two predictive tasks, we gave participants
two existing datasets, one from Tidy Tuesday classifying songs by
genre6 and the other from Kaggle predicting IMDB movie scores7.
We chose these datasets because they were of comparable total
size, involve non-technical domains, and are complex enough to
be worthy of analysis. We conterbalanced use of the two datasets
between subjects.

The remainder of the session consisted of four parts: (1) using a
standard Jupyter Notebook to build a predictive model (15 min); (2)
a tutorial on forking and backtracking (10–20min); (3) using Jupyter
Notebook with forking and backtracking to build a predictive model
(15–25 min); and a final questionnaire. The questionnaire asked
how well each of these experiences supported their tasks, as well
as how they might apply forking and backtracking in their daily
work. The purpose of using a standard Jupyter Notebook was to
aid in comparing the experiences, rather than making quantitative
comparisons. Hence these two experiences are not counterbalanced.

This study took place at a time when in-person studies were
not feasible. The participants took part in this study on a single
monitor through a remote desktop onto a virtual machine hosted
on a cloud platform. They used their own machines with a variety
of monitor sizes.

7 RESULTS
We analyze how participants use, or do not use, forking and back-
tracking in the usability study. We additionally analyze participant
responses to survey questions as well as utterances during the
study.

7.1 Effectiveness of Tool and Features
After completing all tasks in the study, participants were asked
to fill out Likert-scale questions about how they would use this
tool. One participant was unable to answer these questions due to
a computer crash at the end of the study.

5https://scikit-learn.org/
6https://github.com/rfordatascience/tidytuesday/tree/master/data/2020/2020-01-21
7https://www.kaggle.com/carolzhangdc/imdb-5000-movie-dataset

The first set of items asked how well each experience supported
their tasks, on a 5-point Likert scale directly comparing the two: (1)
standard notebooks were very much better; (2) standard notebooks
were somewhat better; (3) the twowere equal; (4) fork and backtrack
were somewhat better; and (5) fork and backtrack were very much
better. The items are based on Exploration, Results Worth Effort, Ex-
pressiveness, and Collaboration items from the Creativity Support
Index [4], a psychometric survey designed to evaluate how well a
tool assists a user in their creative work such as data exploratory
analyses. As can be seen in Figure 6, participants found the tool
useful across all of these dimensions, finding the tool particularly
effective at supporting Exploration and Results Worth Effort.

The second set of questions asked participants to rate the help-
fulness of certain tool functionality on a 3-point Likert scale, with
an option to decline if they did not have enough information. As
can be seen in Figure 7 participants found all features would be
helpful to their everyday work, even if they did not use all those
features in the study.

7.2 Forks
Data scientists make many decisions over the course of an ex-
ploratory task. By providing a clear interface that allows partic-
ipants to express these decisions, we gain insight into some of
these decision points. 9 of the 11 participants created forks over
the course of the usability study, creating at most 3 (median=1)
forks with at most 3 paths (median=2) at a time. P3 did not use
the tool because they wanted to “very carefully” understand the
functionality before using it, though still thought the tool would be
useful to their everyday work. P10 had technical issues effectively
cutting down their time on the task, but noted they would have
created a fork after making more progress on the task.

7.2.1 Forking Opportunities. We find that participants often used
forking to compare decisions. P7 used forks to compare alternative
visualizations of the same columns to understand the relationships
between columns in the data. P1 and P9 used a fork to compare
different approaches for handling null values in the data, continuing
to build the same model in both paths. 6 participants used forks to
explore different subsets of features to feed into the models they
built. Finally, P4 used a fork to compare multiple different classifier
models.

However, participants also appropriated forking beyond com-
paring alternatives. Participants used forks to organize their code
and contain messes as they worked. In particular, they dedicated a
path as a safe “playground” for code that was dangerous or not to
be included in their final “clean” notebook. Early on, P1 used a path
to explore how transforming a categorical variable into dummy
columns would affect the size of the data and subsequent perfor-
mance of the task. Later in the study, when a particular model
failed, P1 created a new path to explore the data and try to address
the issue. P6 exhibited similar behavior. P9 echos this use, appre-
ciating the “seamless transition from main code to “experiment”
code...without creating duplicate code or extra if-else logic.”

Additionally, participants used the side-by-side layout of forks
for parallelism. P4 used two paths to rapidly iterate adding and re-
moving different feature columns,maintaining the better-performing
path at each iteration and then modifying the other for the next

Fork It: Supporting Stateful Alternatives in Computational Notebooks CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 6: Results from Likert-item questions exploring which interface better supported certain goals. Participants found
forking and backtracking functionality most helpful for exploration and least helpful for collaboration.

Figure 7: Results from Likert-item questions determining the helpfulness of various features of the tool. Participants thought
all features would be helpful to their everyday work

experiment. P11 took advantage of long-running tasks, such as
hyper-parameter tuning, to context switch to another line of work
and return as soon as the lengthy command had completed.

7.2.2 Confusion of “Above-Fork” Execution. 8 of the 9 participants
that created forks executed code on an “above-fork” cell, for example
when importing additional libraries in their first cell. This clearly
indicates a need to support out-of-order execution even when a fork
is present. The execution behavior worked for 7 of them, allowing
them to continue with their work without issues. When it did not
work, a “Restart & Run All” was able to fix the issue.

However, despite this not interrupting their flow, several partici-
pants expressed their concern reflecting on the task that they did not
have a good understanding of how or why it worked. The tool could
address this by following a similar approach to Git or VarioLite [11],
creating a new fork whenever users re-execute “above-fork” code.
It would also be interesting to run a more targeted study to un-
derstand the expected or desired behavior of running “above-fork”
cells to see if a less disruptive design could address this issue.

7.2.3 Sharing code across paths. A few participants noted the frus-
trations of copy-pasting similar cells between paths, e.g. the model
building and testing code after selecting a different subset of fea-
tures. One participant, P7, went as far as creating a list of function
arguments in an “above-fork” cell and unpacking them in the du-
plicate function calls in each fork.

Jupyter notebooks currently support functionality to copy and
paste cells. Though this would reduce the impact of this limitation,
it is an infrequently used feature that manymay not know about. Al-
ternatively, the tool could be improved by supporting “linked” cells,
similar to Juxtapose [8], which would contain the same code across
multiple paths. This would allow users to express code common
across multiple paths, for example, code to compute performance
metrics for models on different paths.

7.2.4 Width. The most frequent critique, though easy to address,
was the narrow width of cells in different paths. This could be
partially addressed by simply “having the Jupyter notebook scale
to 100%” instead of setting a maximum width as it currently does.
Despite the complaints of narrow cells, however, participants still
highly valued the ability for side-by-side comparisons. The tool
could be greatly improved by providing more functionality for
selecting visible paths. Simply allowing “only showing one fork at
a time...and switching between them” [P4], in addition to the side-
by-side comparisons, could give users sufficient control to address
this concern.

7.3 Limited Use of Backtracking
2 participants used backtracking as they constructed their models.
After P2 generated their first model, they used backtracking to undo
four cells’ executions and to try an alternative set of features. P5
used it to debug a data quality issue, after corrupting the data in a

CHI ’21, May 8–13, 2021, Yokohama, Japan Weinman et al.

way that would have been difficult to recover from. No participants
used backtracking to select historic execution states for comparison.

We believe there are two reason why this feature did not see
more use. First, 20 minutes may have been insufficient time for
the problem to occur. As P11 stated, they “didn’t use back tracking
because they didn’t have enough time to get to a point where they
would have done this.”

Second, some participants did not recognize the opportunities
to use backtracking for comparisons. P6 and P8 both created forks
retroactively, modifying cells that had already been written. How-
ever, they used the “Create Fork Below” functionality, which was
designed for proactive forks, copying the current execution state.
One possible explanation is the tutorial may have presented this
feature too narrowly by focusing on correcting errors. Participants
also have ingrained habits around statement management, for ex-
ample, rerunning cells to re-create states by hand, which compete
with the backtracking feature.

7.4 Scaling to More Complex Tasks
7.4.1 Visualizing State. 4 participants expressed concern in their
understanding of which values of variables are present in each path.
P4 wished “it was clear what variables and classes are available to
which kernels”. However, P10 noted that while “it can be a little
confusing to understand the state of a cell that you are going to run
at first...it isn’t bad after using it for a few minutes.” This concern
could be addressed with more intelligent and persistent sidebar
displays, for example showing the current summary of variables as
done in the backtrack model.

7.4.2 Supporting Full Trees. For simplicity, our prototype only al-
lows a single fork at a time, which the user interface enforces by
maintaining separate “normal” and “forking” modes. This meant
participants could only express a single fork point at a time, even if
there could be an arbitrary number of paths. P6 wishes they could
“archive paths (instead of deleting them)...for the option of reviving
them later”. P9 expressed a desire for “nested forks...when taking
different approaches at different stages of an experiment.” F3 from
the formative study similarly expressed a desire to “keep them both
to say, look, this is the performance of this one”. This limitation
might be more of a hindrance in the complexity of our participants’
daily work. Future work could address this with helpful visualiza-
tions, such as a hierarchical organization in “a small side navigation
like [folder structure in] VS code” [P3].

7.5 Evaluating our Design Principles
We revisit how well our tool supports our original design motiva-
tions, in the light of user feedback.

7.5.1 Expressing Alternatives. The implementation of using forks
to express alternatives “makes perfect sense” [P5], “is awesome”
[P10], and offers “easy exploration” [P6] “without having to worry
about the state of the notebook” [P9]. Participants found forking
to a be a natural metaphor to express the decision-making process
already in their work, using it in a range of different ways. One
participant in particular was grateful to finally have a way to “or-
ganize the age-old question of "have you tried doing it this way?””
[P11].

Though many participants found forking, in particular preemp-
tive forking, to be a natural representation of their process, there
were some concerns about using notebooks with forks as an artifact
for communication. P1 liked that, in traditional notebooks, “you
can follow the top to bottom train of thought”. P8 mentioned they’d
only use forking and backtracking “for exploration that I didn’t
need to share heavily with others”. This is particularly surprising
given how “intuitive” [F3] the idea of forking is. Regardless, forking
clearly provides a good opportunity for data scientists to express
alternatives for their own organization.

7.5.2 Manipulating Execution. P11 was thrilled to “not have to
rerun the entire notebook when they accidentally mess something
up (which happens often)!”. Most participants were thrilled to be
able to easily reverse regrettable code. P6 noted that they wouldn’t
use this feature often, though, as they organize cells and variables
such that, when they fix a mistake in a cell, they can simply run all
the cells below. As P7 mentions, though, for many notebooks it is
common to “have a lot of cells they need to run to get back to their
preferred state,” emphasizing the need for backtracking for many.

However, though participants were excited to undo cell execu-
tions, the benefit of forking as part of backtracking was less obvious.
Participants did not seem to realize that backtracking could be used
to simply to explore alternative paths from previous states in the
code. We originally conceived of backtracking as a form of forking
that does not require forethought. However, based on participant
feedback, having a light-weight way to browse and resurrect previ-
ous execution states is so useful that it may be better to make this
its own independent feature.

7.5.3 Side-by-Side Presentation. This prototype took a step to-
wards providing more expressive organization of cells and content
in Jupyter notebooks. Before seeing our tool, P1 expressed a desire
when working with notebooks to “branch one of the data process-
ing tasks and compare them side by side”. Despite complaints about
the width of the window, participants expressed strong support
for organizing different hypotheses and techniques adjacently. P3
notes that this visualization naturally represents the “hierarchy”
of their work, and could be taken further by supporting nested
forks. P6 reflects on how this would save them from spreading their
“explorations across multiple Jupyter notebooks” which must then
be carefully “organized in a certain way.”

7.6 Threats to Validity
Our study has three threats to external validity. First, the partici-
pants did not do tasks that were important to them, on their own
data, in their own time constraints. We selected datasets that would
be sufficiently complex for participants, giving all but 2 of them
enough time to reach some meaningful decision points. Second, the
study’s short duration limited the complexity of analysis partici-
pants were able to perform. That being said, people felt engaged
in the task and were still able to explore the data and the tool in
order to give meaningful feedback. Finally, participants were all
members of a single organization.

Fork It: Supporting Stateful Alternatives in Computational Notebooks CHI ’21, May 8–13, 2021, Yokohama, Japan

8 DISCUSSION
This paper introduces a tool that expands upon the linearity of
notebooks. Visually, it breaks the single-column view of cells. It
also exposes multiple, independent execution states and allows
users to move back through them instead of simply forward. We
observed that users find utility and desire to incorporate forking
and backtracking within their data analysis workflows. The positive
reactions from this initial implementation, along with insights into
how users chose to leverage this functionality, suggest that fur-
ther exploration will be fruitful. Future work can investigate more
effective interfaces to manage branches, compare various paths,
and manage the tension between linear history and non-linear
exploration.

We found that these ideas map well to users’ expression of alter-
natives and decision points. In the usability study, participants used
forks to express and compare different approaches, from finding
which visualizations make the best sense of the data to comparing
the effectiveness of different machine learning models. Though
side-by-side comparison had some challenges, the ability to proxi-
mally compare was crucial. We also found users interpreting the
results from one exploration to go back to a previous cell and branch
off to explore another approach, although they often did not use
backtracking to express that intent.

We found participants adopted this tool to address other needs
as well, in particular, as a debugging tool. Forking allows users
to create a "scratch pad" to make sense of their data or to learn
library functionality. For two participants, backtracking allowed
them to undo otherwise difficult-to-reverse state changes, such as
corrupting the data.

Traditional breakpoint debuggers and the RStudio 8 environment
providewindows to show the current values of variables. In contrast,
the existing notebook interface keeps this execution state hidden,
unless users write scripting code to query the state. In hindsight,
adding a variables window may have cleared up our participants’
confusion about the active state on each path of a fork. In addition,
a variables window would have provided an affordance for users
to browse to past execution states, which would have made the
backtracking feature more prominent.

Finally, this work highlights some challenges that must be ad-
dressed before this tool could be truly effective for the length and
complexity of real-world data science tasks. If multiple forks are
allowed, more work must be done to explore how to best visualize
and help users manage the full hierarchical structure. For example,
a simple interface to hide paths, such as tabs as in a browser, as
well as small hierarchical viewer of forking points could address
much of this challenge. Alternatively, a more sophisticated interface
might be effective, such as one inspired by Variolite [11]. Better
visualization and management could also address the confusing
semantics to “above-fork” out-of-order cell execution, for example
by simply forking automatically for users, thoughmore work would
need to explore if this is sufficient.

9 CONCLUSION
Based on an analysis and interviews with 6 professional data sci-
entists, we have developed a prototype that explores forking and
8https://rstudio.com/

backtracking. We evaluated this prototype with 11 professional
data scientists, confirming that forking, as a metaphor, is a helpful
way to annotate decisions and compare alternatives. Backtracking,
or an ability to navigate back through previous executions, and
forking also address debugging challenges which arise from the
highly iterative nature of notebooks. Data scientists responded pos-
itively to the forking and backtracking tools, which provide them
access to a more powerful notebook experience. Their interactions
highlight UI design opportunities around managing forks and paths
to create a more scalable experience.

ACKNOWLEDGMENTS
We thank Gonzalo Ramos and Souti Chattopadhyay for the fruitful
discussions, and the data scientists at Microsoft for participating in
the studies.

REFERENCES
[1] Sara Alspaugh, Nava Zokaei, Andrea Liu, Cindy Jin, and Marti A Hearst. 2018.

Futzing and moseying: Interviews with professional data analysts on exploration
practices. IEEE transactions on visualization and computer graphics 25, 1 (2018),
22–31.

[2] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: A Case Study. In Proceedings
of the 41st International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP ’19). IEEE Press, Hoboken, NJ, USA, 291–300. https:
//doi.org/10.1109/ICSE-SEIP.2019.00042

[3] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola. 2010. Code Bubbles: A Working Set-Based Interface for Code Un-
derstanding and Maintenance. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Asso-
ciation for Computing Machinery, New York, NY, USA, 2503–2512. https:
//doi.org/10.1145/1753326.1753706

[4] Erin Cherry and Celine Latulipe. 2014. Quantifying the Creativity Support
of Digital Tools through the Creativity Support Index. ACM Transactions on
Computer-Human Interaction 21, 4 (Aug. 2014), 1–25. https://doi.org/10.1145/
2617588

[5] Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and Steven P. Reiss.
2012. Debugger Canvas: Industrial experience with the code bubbles paradigm. In
2012 34th International Conference on Software Engineering (ICSE). IEEE, Hoboken,
NJ, USA, 1064–1073. https://doi.org/10.1109/icse.2012.6227113

[6] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. 1996. The KDD
process for extracting useful knowledge from volumes of data. Commun. ACM
39, 11 (Nov. 1996), 27–34. https://doi.org/10.1145/240455.240464

[7] Jonathan Goldstein, Ahmed Abdelhamid, Mike Barnett, Sebastian Burckhardt,
Badrish Chandramouli, Darren Gehring, Niel Lebeck, Christopher Meiklejohn,
Umar Farooq Minhas, Ryan Newton, Rahee Ghosh Peshawaria, Tal Zaccai, and
Irene Zhang. 2020. A.M.B.R.O.S.I.A. Proceedings of the VLDB Endowment 13, 5
(Jan. 2020), 588–601. https://doi.org/10.14778/3377369.3377370

[8] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klem-
mer. 2008. Design as Exploration: Creating Interface Alternatives through Par-
allel Authoring and Runtime Tuning. In Proceedings of the 21st Annual ACM
Symposium on User Interface Software and Technology (Monterey, CA, USA)
(UIST ’08). Association for Computing Machinery, New York, NY, USA, 91–100.
https://doi.org/10.1145/1449715.1449732

[9] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine.
2019. Managing Messes in Computational Notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems - CHI '19. ACM Press,
New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300500

[10] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. 2012. Enterprise Data Analysis
and Visualization: An Interview Study. IEEE Transactions on Visualization and
Computer Graphics 18, 12 (2012), 2917–2926. https://doi.org/10.1109/TVCG.2012.
219

[11] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. ACM, New York, NY, USA,
1265–1276. https://doi.org/10.1145/3025453.3025626

[12] Mary Beth Kery, Bonnie E. John, Patrick O'Flaherty, Amber Horvath, and Brad A.
Myers. 2019. Towards Effective Foraging by Data Scientists to Find Past Analysis
Choices. In Proceedings of the 2019 CHI Conference on Human Factors in Computing

https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/1753326.1753706
https://doi.org/10.1145/2617588
https://doi.org/10.1145/2617588
https://doi.org/10.1109/icse.2012.6227113
https://doi.org/10.1145/240455.240464
https://doi.org/10.14778/3377369.3377370
https://doi.org/10.1145/1449715.1449732
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1109/TVCG.2012.219
https://doi.org/10.1109/TVCG.2012.219
https://doi.org/10.1145/3025453.3025626

CHI ’21, May 8–13, 2021, Yokohama, Japan Weinman et al.

Systems - CHI '19. ACM Press, New York, NY, USA, 1–13. https://doi.org/10.1145/
3290605.3300322

[13] Mary Beth Kery and Brad A. Myers. 2017. Exploring exploratory programming.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, Hoboken, NJ, USA, 25–29. https://doi.org/10.1109/vlhcc.2017.
8103446

[14] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers. 2018. The Story in the Notebook: Exploratory Data Science Using a
Literate Programming Tool. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems - CHI '18. ACM Press, New York, NY, USA, 1–11.
https://doi.org/10.1145/3173574.3173748

[15] Donald Ervin Knuth. 1984. Literate programming. Comput. J. 27, 2 (1984), 97–111.
[16] Jiali Liu, Nadia Boukhelifa, and James R. Eagan. 2019. Understanding the Role of

Alternatives in Data Analysis Practices. IEEE Transactions on Visualization and
Computer Graphics 26 (2019), 66–76. https://doi.org/10.1109/tvcg.2019.2934593

[17] Hiroaki Mikami, Daisuke Sakamoto, and Takeo Igarashi. 2017. Micro-Versioning
Tool to Support Experimentation in Exploratory Programming. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, New
York, NY, USA, 6208–6219. https://doi.org/10.1145/3025453.3025597

[18] Michael Muller, Ingrid Lange, DakuoWang, David Piorkowski, Jason Tsay, Q. Vera
Liao, Casey Dugan, and Thomas Erickson. 2019. How Data Science Workers
Work with Data. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems - CHI '19. ACM Press, New York, NY, USA, 1–15. https:
//doi.org/10.1145/3290605.3300356

[19] Nicholas Nelson, A. Sarma, and A. Hoek. 2017. Towards an IDE to Support
Programming as Problem-Solving. In PPIG. PPIG, Delft, NL, 15.

[20] P. Pirolli and S. Card. 2005. The sensemaking process and leverage points for
analyst technology as identified through cognitive task analysis. In Proceedings

of International Conference on Intelligence Analysis. ACM Press, New York, NY,
USA, 2–4. https://phibetaiota.net/wp-content/uploads/2014/12/Sensemaking-
Process-Pirolli-and-Card.pdf

[21] Bernadette M. Randles, Irene V. Pasquetto, Milena S. Golshan, and Christine L.
Borgman. 2017. Using the Jupyter Notebook as a Tool for Open Science: An
Empirical Study. In 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL).
IEEE, Hoboken, NJ, USA, 1–2. https://doi.org/10.1109/jcdl.2017.7991618

[22] Adam Rule, Ian Drosos, Aurélien Tabard, and James D. Hollan. 2018. Aiding
Collaborative Reuse of Computational Notebooks with Annotated Cell Folding.
Proceedings of the ACM on Human-Computer Interaction 2, CSCW (Nov. 2018),
1–12. https://doi.org/10.1145/3274419

[23] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Expla-
nation in Computational Notebooks. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems - CHI '18. ACM Press, New York, NY,
USA, 1–12. https://doi.org/10.1145/3173574.3173606

[24] Kluyver Thomas, Ragan-Kelley Benjamin, Perez Fernando, Granger Brian, Bus-
sonnier Matthias, Frederic Jonathan, Kelley Kyle, Hamrick Jessica, Grout Ja-
son, Corlay Sylvain, and et al. 2016. Jupyter Notebooks: a publishing format
for reproducible computational workflows. Stand Alone 0, Positioning and
Power in Academic Publishing: Players, Agents and Agendas (2016), 87–90.
https://doi.org/10.3233/978-1-61499-649-1-87

[25] Mark Weiser. 1984. Program Slicing. IEEE Transactions on Software Engineering
SE-10, 4 (July 1984), 352–357. https://doi.org/10.1109/tse.1984.5010248

[26] Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis,
Richard T. Guy, Steven H. D. Haddock, Kathryn D. Huff, Ian M. Mitchell, Mark D.
Plumbley, Ben Waugh, Ethan P. White, and Paul Wilson. 2014. Best Practices for
Scientific Computing. PLoS Biology 12, 1 (Jan. 2014), e1001745. https://doi.org/
10.1371/journal.pbio.1001745

https://doi.org/10.1145/3290605.3300322
https://doi.org/10.1145/3290605.3300322
https://doi.org/10.1109/vlhcc.2017.8103446
https://doi.org/10.1109/vlhcc.2017.8103446
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1109/tvcg.2019.2934593
https://doi.org/10.1145/3025453.3025597
https://doi.org/10.1145/3290605.3300356
https://doi.org/10.1145/3290605.3300356
https://phibetaiota.net/wp-content/uploads/2014/12/Sensemaking-Process-Pirolli-and-Card.pdf
https://phibetaiota.net/wp-content/uploads/2014/12/Sensemaking-Process-Pirolli-and-Card.pdf
https://doi.org/10.1109/jcdl.2017.7991618
https://doi.org/10.1145/3274419
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1109/tse.1984.5010248
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745

	Abstract
	1 Introduction
	2 Related Work
	2.1 Exploration in Notebooks
	2.2 Support for Revisions in Notebooks
	2.3 Non-Linear Presentations

	3 Formative Interviews
	3.1 Current Pain Points
	3.2 Expressing Alternatives
	3.3 Execution History
	3.4 Visualizing Alternatives

	4 Example Usage Scenario
	4.1 Containing Messes
	4.2 Comparing Approaches
	4.3 Communicating Decisions

	5 Implementation
	5.1 Managing Kernels
	5.2 Future performance optimizations

	6 Qualitative Evaluation
	7 Results
	7.1 Effectiveness of Tool and Features
	7.2 Forks
	7.3 Limited Use of Backtracking
	7.4 Scaling to More Complex Tasks
	7.5 Evaluating our Design Principles
	7.6 Threats to Validity

	8 Discussion
	9 Conclusion
	Acknowledgments
	References

