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ABSTRACT

Despite the advanced static analysis tools available within
modern integrated development environments (IDEs) for
detecting anomalies, the error messages these tools produce
to describe these anomalies remain perplexing for developers
to comprehend. This research postulates that tools can
computationally expose their internal reasoning processes to
generate assistive error explanations that more closely align
with how developers explain errors to themselves. My work
demonstrates that tools stand to significantly benefit if they
incorporate explanation principles in their design.

1. INTRODUCTION

Modern software development typically occurs within an
integrated development environment (IDE), such as Eclipse,
Visual Studio, and IntelliJ.! One task developers perform
within this IDE is understanding and fixing anomalies that
static analysis tools identify within the environment. These
anomalies are presented to the developer through the IDE as
error messages. Despite the sophisticated reasoning processes
of static analysis tools such as clang [1] and Coverity [10]
for surfacing program analysis details, developers continue
to have difficulty understanding the messages the tools pro-
duce [12, 19, 5]. Consequently, static analysis anomalies
remain perplexing for developers to resolve [25].

The objective of my research is to identify and address
the difficulties that developers face during error compre-
hension and resolution tasks. I argue that static analysis
error messages should be reframed as assistive error ez-
planations to better align and support the self-generated
explanations [13], or self-ezplanations, that developers use to
understand anomalies (Figure 1) [7]. The significance of this
work is that static analysis explanations have the potential
to substantially improve developer comprehension of static
analysis anomalies. The expected contribution of this work
is to advance a theoretical framework that guides how static
analysis tools should explain anomalies to developers.
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Figure 1: A mock-up of an Eclipse IDE that pro-
vides assistive explanations to the developer for an
ambiguous method anomaly.

2. BACKGROUND

Self-explanation as a cognitive mechanism. Chi and
colleagues found that self-explanation is an essential cognitive
process that provides the “cognitive bridge” through which
humans translate declarative facts to understanding [13].
Since the original finding, self-explanation has been repli-
cated in a variety of domains [4, 15, 24, 27], including com-
puter programming tasks [26, 11]; the cognitive process of
self-explanation appears to be not only essential, but ubiq-
uitous [6]. Subsequent work by Chi and colleagues have
found that self-explanation can be elicited through explicit
prompts [14], whether by humans or by computers [4], and
that self-explanation effects are significantly enhanced when
diagrams are used over text alone [3].

Computationally supporting self-explanations. Lim
and colleagues found that when intelligent systems explain
why the system behaved a certain way, participants report
better understanding and stronger feelings of trust with the
system [22]. Kulesza and colleagues also investigated expla-
nations for intelligent systems, focusing on how properties of
soundness and completeness affect the fidelity of end users’
mental models [18]. Their findings suggest that completeness
is more useful than soundness. The Whyline system is a pro-
totype interrogative debugging interface in which developers
can ask the system “Why” or “Why not” questions to obtain
an explanation of runtime events [17]. Results from the The-
seus tool for visualizing runtime behavior showed that users
quickly adopted these visualizations and incorporated the
information in their own self-explanations [21].
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Figure 2: The interaction framework, instantiated
for IDEs. Coverage over the framework provides
support towards a theory of self-explanation.

3. APPROACH

My approach to building a theory of self-explanation for
static analysis anomalies is actualized by providing coverage
over Abowd and Beale’s interaction framework (Figure 2) [25,
2, 9]. This framework comprises four components: a com-
piler, a developer, an input, and an output. The framework
components of input (e.g., entering source code) and output
(e.g., an error message) are encapsulated as the IDE. The
compiler presents an error to the developer through the IDE,
and the IDE can augment this presentation by, e.g., visually
underlining the offending code. This error must then be
observed and comprehended by the developer. The developer
must then articulate a resolution through the IDE, either as
a manual edit to the code or through an automated tool in
the IDE. The IDE then invokes the compiler, which performs
the compilation process, and the cycle repeats.

4. RESULTS

Presentation and Observation. To understand how
existing presentations in IDEs do not align with the way
developers self-explain errors to themselves, I conducted a
pencil-and-paper think-aloud study in which developers self-
explained source code listings and error messages as presented
by Eclipse [7].? T asked participants to explain each compiler
anomaly while making annotations on the source code during
their explanation. Findings. First, the availability of error
explanations (Figure 1) yields significantly better judgments
by developers about the causes of the error. Second, devel-
opers adopt conventions from these visualizations in their
own explanations, suggesting that they are useful. Third, a
cognitive dimensions questionnaire [16] reveals that error ex-
planations are beneficial to developers because they explicate
the relationships between different program elements.

Performance and Articulation. The traditional ab-
straction of compilers is that they are sophisticated black
boxes [20]. Our work in the development of FixBucs (Fig-
ure 3) demonstrates that it is feasible to retrofit existing
compilers to expose explanatory features to the developer.?
To understand how developers might benefit when toolsmiths
move beyond speed as a primary metric for applying fixes to
anomalies, we conducted an experiment using FixBuas [8].
In contrast with one-shot Quick Fires provided by IDEs,
FixBuas balances the automation provided by development
tools with the developers’ need to explore and comprehend
the design space of resolutions. An analytical, heuristic eval-

2http://go.barik.net /errviz
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public static Object invoke (Cbject obj, String
mthName, Class argType, Object a.r:g)yz
try {
Method mth;
mth = obj.getClass().getMethod (mthName,
new Class[] { argType }):
return mth.invoke (obj, new Object[] { arg }):

(Original)
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e.printStackTrace();

return null:;

Figure 3: In contrast to Quick Fixes, FixBugs en-
ables design space exploration. Here, the devel-
opers can throw or catch exceptions through drag-
and-drop actions for resolving a missing exception
anomaly.

Table 1: Evaluators’ (E1-E6) positive scores indicate
preference towards FixBugs and negative scores in-
dicating preference towards Quick Fix. A raised dot
(-) indicates that the evaluator did not find the cri-
teria applicable.

CS PSY IND
Heuristic El E2 E3 E4 E5 E6
VISIBILITY +2 +1 +1 -4 +1
UsER cONTROL/FREEDOM +1  +2 41 +2 42 +1
RECOGNITION +2 +2 +4 +1
AESTHETIC +1 +2 -3 -1
RECOGNIZE/DIAGNOSE +1 . +1 BERE28 —2 B2

uation [23] identified trade-offs between the design of Quick
Fix and FixBuas along several dimensions. Table 1 summa-
rizes the relative preference of FIxBuas to Quick Fix from
expert evaluators across computer science, psychology, and
industry software engineering. Findings. From the evalua-
tion feedback, evaluators reported that Quick Fix is preferred
when minimal or no design exploration is necessary to ap-
ply the fix. FixBuas excels in situations where fixes can
be provided, but the permutation of possible design choices
within that space have more variation. A descriptive coding
of the feedback identified that a) enabling exploration of
alternative design spaces, b) providing direct feedback, and
c¢) offering structured manipulation for applying changes,
facilitate self-explanation.

5. CONCLUSION

The comprehensibility and utility of error messages for
static analysis anomalies can be significantly improved by
reframing error messages as error explanations that more
closely align with how developers explain anomalies to them-
selves. The results of this work contribute towards a theory
of how static analysis tools should explain anomalies to de-
velopers.
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