
One λ at a time: What do we know about presenting
human-friendly output from program analysis tools?

A Scoping Review of PLDI Proceedings for HCI Researchers

Titus Barik

North Carolina State University

Chris Parnin

North Carolina State University

Emerson Murphy-Hill

North Carolina State University

Abstract
Program analysis tools perform sophisticated analysis on

source code to help programmers resolve compiler errors,

apply optimizations, and identify security vulnerabilities.

Despite the utility of these tools, research suggests that pro-

grammers do not frequently adopt them in practice—a pri-

mary reason being that the output of these tools is difficult

to understand. Towards providing a synthesis of what re-

searchers know about the presentation of program analy-

sis output to programmers, we conducted a scoping review

of the PLDI conference proceedings from 1988-2017. The

scoping review serves as interim guidance for advancing

collaborations between research disciplines. We discuss how

cross-disciplinary communities, such as PLATEAU, are criti-

cal to improving the usability of program analysis tools.

1 Introduction
In 1983, Brown [12] lamented that one of the most neglected

aspects of the human-machine interface was the quality of

the error messages produced by the machine. Today, it ap-

pears that many of Brown’s laments still hold true with

regard to program analysis tools—tools that are intended to

help programmers resolve defects in their code. For example,

interview and survey studies conducted at Microsoft reveal

that poor error messages remain one of the top pain points

when using program analysis tools [16], and other studies

show similar frustration with error messages in tools [7, 33,

53]. In academia, the situation seems even more dire. As Ha-

nenberg [27] notes in his essay on programming languages

research: “developers, which are the main audience for new

language constructs, are hardly considered in the research

process.” And Danas et al. [19] note that in some cases, the

output of program analysis tools, such as in model-finders

and SAT-solvers, are generated arbitrarily and in an unprin-

cipled way, without regard to the friendliness towards the

programmer who might actually use them.

In prior work [8], we have modeled the interaction of

programmers with their program analysis tools in terms of

an interaction framework, conceptualized by Abowd and

Beale [1] and adapted to tools by Traver [59] (Figure 1). The

PLATEAU’17 Workshop on Evaluation and Usability of Programming Lan-
guages and Tools, October 23, 2017, Vancouver, CA

Output

Input

ProgrammerTool

observation

articulationperformance

presentation

IDE/console

Figure 1. The interaction framework.

interaction framework describes the different interactions

between the tool and the programmer, with the tool perform-

ing some sophisticated analysis, presenting the information

to the programmer for observation through a console or

IDE, and then allowing the programmer to articulate their

intentions back to the tool. In this paper, we are interested

specifically in the presentation aspect of the framework, and

what we know about presenting human-friendly output from

program analysis tools.

Towards the longer-term goal of providing a comprehen-

sive knowledge synthesis about program analysis output,

we conducted an interim scoping review of the proceedings

from Programming Language Design and Implementation

(PLDI), from 1988-2017. The scoping review is intended to be

accessible to human-computer interaction (HCI) researchers

who want to understand how the PL community is currently

applying program analysis output, in order to eventually

bridge HCI research with program analysis tools. Conse-

quently, while PLDI papers are typically written to empha-

size the formal properties of their program analysis tools as

their primary goal, our scoping review reframes these papers

in terms of the their program analysis output as the primary

investigation.

The contributions of this scoping review are:

• A quasi-gold set of manually-identified papers from

PLDI that relate to program analysis output, to boot-

strap future, comprehensive literature reviews on the

subject of human-friendly program analysis output.

• A knowledge synthesis of the features of program

analysis output that researchers employ to present

output to programmers, instantiated as a taxonomy

(Section 3). Our taxonomy is agnostic to a particular

mode of output, such as text or graphics.



PLATEAU’17, October 23, 2017, Vancouver, CA Titus Barik, Chris Parnin, and Emerson Murphy-Hill

2 Methodology
2.1 What is a Scoping Review?
In this study, we conduct a scoping review—a reduced form of

the traditional systematic literature review [5, 35]. Scoping

reviews have many of the same characteristics of traditional

literature reviews: their purpose is to collect, evaluate, and

present the available research evidence for a particular in-

vestigation. However, because of their reduced form, they

can also be executed more rapidly than traditional literature

reviews [52]. For example, reductions to scoping reviews in-

clude limiting the types of literature databases, constraining

the date range under investigation, or eliding consistency

measures such as inter-rater agreement. A notable weakness

of scoping reviews is that they are not a final output; instead,

they provide interim guidance towards what to expect if a

comprehensive literature review were to be conducted. Scop-

ing reviews are particularly useful in this interim stage for

soliciting guidance on conducting a more formal review, as

is our intention in this paper.

2.2 Execution of SALSA Framework
We conducted our scoping review using the traditional SALSA

framework: Search,AppraisaL, Synthesis, andAnalysis. Here,
we discuss the additional constraints we adopted in using

SALSA for our scoping review.

Search.We scoped our search to all papers within a single

conference: Programming Language Design and Implemen-

tation (PLDI), for all years (1988-2017). As HCI researchers,

we selected PLDI because it is considered to be a top-tier

conference for programming languages research, because

it contains a variety of program analysis tools, and because

these tools tend to have formal properties of soundness and

completeness that are not typically found in prototype tools

within HCI. Discussions with other researchers within PLDI

also revealed that researchers are interested in having their

tools adopted by a broader community, but confusing pro-

gram analysis output hinders usability of the tools to users

outside their own research groups.

Appraisal.We manually identified papers through multi-

ple passes. In the first pass, we skimmed titles and abstracts

and included any papers which mentioned a program anal-

ysis tool and indicated output intended to be consumed by

a programmer other than the authors of the tool. In this

pass, our goal was to be liberal with paper inclusion, and

to minimize false negatives. We interpreted program anal-

ysis tools in the broadest sense, to include model checkers,

verifiers, static analysis tools, and dynamic analysis tools.

In the second pass, we examined the contents of the paper

to identify if the paper contributed or discussed its output.

Finally, we removed papers that were purely related to reduc-

ing false positives, unless those papers used false positives

as part of their output to provide additional information to

the programmer. For some papers, the output was measured

Table 1. Taxonomy of Presentation

Feature Section

Alignment Section 3.1

Clustering and Classification Section 3.2

Comparing Section 3.3

Example Section 3.4

Interactivity Section 3.5

Localizing Section 3.6

Ranking Section 3.7

Reducing Section 3.8

Tracing Section 3.9

in terms of manual patches submitted to bug repositories.

We excluded such papers since the output was manually

constructed, and not obtained directly from the tool.

Synthesis and Analysis.We synthesized the papers into

a taxonomy of presentation features (Section 3). For analysis,

we opted for a narrative-commentary approach [24] in which

we summarized the contributions of each of the papers with

respect to human-friendly presentations.

2.3 Limitations
As a form of interim guidance, a scoping review has several

important limitations. First, the review is biased in several

ways. Being scoped only to PLDI means that the identified

taxonomy is likely to be incomplete. Second, the scoping

review by definition misses key contributions found in other

conferences, such as the International Conference on Soft-

ware Engineering (ICSE), Foundations of Software Engineer-

ing (FSE), and the Conference on Human Factors in Com-

puting Systems (CHI), just to name a few. Third, the paper

summaries are intended to be accessible to HCI researchers

who may not have formal PL experience. As a result, in the

interest of being broadly accessible, some of the summaries

of the papers may be oversimplified in terms of their PL con-

tributions. Finally, any conclusions made from this interim

work should be treated as provisional and subject to revision

as more comprehensive reviews are conducted.

3 Taxonomy of Presentation
In this section, we classify and summarize all of the papers

from PLDI from 1988-2017 that discuss or contribute to pro-

gram analysis output intended for programmers. Intention-

ally, we labeled the taxonomy features such that they do not

commit to a particular textual or visual affordance. For ex-

ample, in a text interface, the feature of ranking (Section 3.7)

may be implemented as an enumerated list of items in the

console, with a prompt for selection if interactivity is re-

quired. In a graphical interface, ranking might instead be

implemented using a drop-down, through which the pro-

grammer would select their desired option.



Human-friendly output from program analysis tools PLATEAU’17, October 23, 2017, Vancouver, CA

The identified taxonomy of presentation features are sum-

marized in Table 1. Some papers describe output that use

multiple features; in these cases, we selected the feature

which we felt best represented the contribution of the out-

put.

3.1 Alignment
In alignment, program analysis output is presented in a rep-

resentation that is already familiar to the programmer.

Within this feature, Pombrio andKrishnamurthi [48] tackle

the problem of syntactic sugar: programming constructs that

make things easier to express, but are ultimately reducible

to alternative constructs. For example, in C, the array access

notation a[i] is syntactic sugar for (the sometimes less con-

venient notation) *(a + i). Unfortunately, syntactic sugar is
eliminated by many transformation algorithms, making the

resulting program unfamiliar to the programmer. Pombrio

and Krishnamurthi [48] introduce a process of resugaring to

allow computation reductions in terms of the surface syntax.

With similar aims, the AutoCorres tool uses a technique of

specification abstraction, to present programmers with a rep-

resentation of the program at a human-readable abstraction

while additionally producing a formal refinement of the final

presentation [25].

Notions of natural language and readability find their

place in several PLDI papers. Qiu et al. [49] propose natural
proofs, in which automated reasoning systems restrict them-

selves to using common patterns found in human proofs.

Given a reference implementation, and an error model of

potential corrections, Singh et al. [55] introduce a method

for automatically deriving minimal corrections to students’

incorrect solutions, in the form of a itemized list of changes,

expressed in natural language. And the AFix tool uses a

variety of static analysis and static code transformations to

design bug fixes for a type of concurrency bug, single-variable
atomicity violations [31]. The bug fixes are human-friendly

in that they attempt to provide a fix that, in addition to other

metrics, does not harm code readability. To support readabil-
ity, the authors manually evaluated several possible locking

policies to determine which ones were most readable.

Issues of alignment and representation become impor-

tant to programmers during understanding of optimizations

in source-level debugging of optimized code [2]; in their

approach, Adl-Tabatabai and Gross [2] detect engendered
variables that would cause the programmer to draw incor-

rect conclusions as a result of internal optimizations by the

compiler. Earlier work by Brooks et al. [11] and Coutant

et al. [18] also provide techniques that allow programmers

to reason about optimized code through mapping the state

of the optimized execution back to the original source. For

example, Brooks et al. [11] use highlighting, boxing, reverse

video, grey-scale shading, boxing, and underlining to ani-

mate and convey runtime program behavior, overlaid on the

original source code, to the programmer.

3.2 Clustering and Classification
Clustering and classification output aims to organize or sep-

arate information in a way that reduces the cognitive burden

for programmers. For example, Narayanasamy et al. [43]

focus on a dynamic analysis technique to automatically clas-

sify data races—a type of concurrency bug in multi-threaded

programs—as being potentially benign or potentially harm-

ful. Furthermore, the tool provides the programmer with a

reproducible scenario of the data race to help the program-

mer understand how it manifests.

Liblit et al. [39] present a statistical dynamic debugging

technique that isolates bugs in programs containing multiple

undiagnosed bugs; importantly, the algorithm separates the

effects of different bugs and identifies predictors that are

associated with individual bugs. An earlier technique using

statistical sampling is also presented by the authors [38]. Ha

et al. [26] introduce a classification technique in Clarify,

a system which classifies behavior profiles—essentially, an
application’s behavior—for black box software components

where the source code is not available. And Ammons et al. [3]

consider the problem of specifications on programs in that

the specifications themselves need methods for debugging;

they present a method for debugging formal, temporal spec-

ifications through concept analysis to automatically group

traces into highly similar clusters.

3.3 Comparing
Comparisons occur in program analysis tools when the pro-

grammer has a need to examine or understand differences

between two or more versions of their code. Within this fea-

ture, Hoffman et al. [28] introduce a technique of semantic
views of program executions to perform trace analysis; they

apply their technique to identify regressions in large soft-

ware applications. Through a differencing technique, their

RPrism tool outputs a semantic “diff” between the original

and new versions, to allow potential causes to be viewed

in their full context. Similarly, early work by Horwitz [29]

identifies both semantic and textual differences between two

versions of a program, in contrast to traditional diff-tools

that treat source as plain text.

3.4 Example
Examples and counterexamples are forms of output that

provide evidence for why a situation can occur or how a

situation can be violated. Examples are usually provided in

conjunction with other presentation features.

The Alive-Infer tool infers preconditions to ensure the

validity of a peephole compiler optimization [42]. To the

user, it reports both a weakest precondition and a set of

“succinct” partial preconditions. For wrong optimizations,

the tool provides counterexamples. Zhang et al. [64] apply a

technique of skeletal program enumeration to generate small

test programs for reporting bugs about in GCC and clang



PLATEAU’17, October 23, 2017, Vancouver, CA Titus Barik, Chris Parnin, and Emerson Murphy-Hill

compilers; the generated test programs contain fewer than 30

lines on average. Still other work with test programs devise

a test-case reducer for C compiler bugs to obtain small and

valid test-cases consistently [50]; the underlying machinery

is based on generic fixpoint computations which invokes a

modular reducer.
Padon et al. [46] hypothesize that one of the reasons au-

tomated methods are difficult to use in practice is because

they are opaque. As Padon et al. [46] state, “they fail in ways

that are difficult for a human user to understand and to

remedy.” Their system, Ivy, graphically displays concrete

counterexamples to induction, and allows the user to in-

teractively guide generation from these counterexamples.

Nguyễn and Van Horn [44] implement a tool in Racket to

generate counterexamples for erroneous modules and Isradi-

saikul and Myers [30] design an algorithm that generates

helpful counterexamples for parsing ambiguities; for every

parsing conflict, the algorithm generates a compact coun-

terexample illustrating the ambiguity.

PSketch is a program synthesis tool that helps program-

mers implement concurrent data structures; it uses a counter
example guided inductive synthesis algorithm (CEGIS) to con-

verge to a solution within a handful of iterations [56]. Given

a partial program example, or a sketch, PSketch outputs a

completed sketch that matches a given correctness criteria.

For type error messages, Lerner et al. [36] pursue an ap-

proach in which the type-checker itself does not produce

error messages, but instead relies on an oracle for a search

procedure that finds similar programs that do type-check; to
bypass the typically-inscrutable type error messages, their

system provides examples of code (at the same location) that

would type check.

And for memory-related output, Cherem et al. [15] imple-

ment an analysis algorithm for detecting memory leaks in C

programs; their analysis uses sparse value-flows to present
concise error messages containing only a few relevant assign-

ments and path conditions that cause the error to happen.

3.5 Interactivity
We identified several papers whose tools support interac-

tivity. That is, the programmer can interact with the tool

either before the output is produced, in order to customize

the output—or work with the output of the tool in a mixed-
initiative fashion, where both the programmer and the tool

collaborate to arrive at a solution.

Within this feature, Parsify is a program synthesis tool

that synthesizes a parser from input and output examples.

The tool interface provides immediate visual feedback in

response to changes in the grammar being refined, as well

as a graphical mechanism for specifying example parse trees

using only textual selections [37]. As the programmer adds

production rules to the grammar, Parsify uses colored re-

gions overlaid on the examples to convey progress to the

programmer.

Live programming is a user interface capability that al-

lows a programmer to edit code and immediately see the

effect of the code changes. Burckhardt et al. [13] introduce a

type and effect formalization that separates the rendering of

UI components as a side effect of the non-rendering logic of

the program. This formalization enables responsive feedback

and allows the programmer to make code changes without

needing to restart the debugging process to refresh the dis-

play.

Dillig et al. [20] present a technique called abductive infer-
ence—that is, to find an explanatory hypothesis for a desired

outcome—to assist programmers in classifying error reports.

The technique computes small, relevant queries presented

to a user that capture exactly the information the analysis is

missing to either discharge or validate the error.

LeakChaser identifies unnecessarily-held memory refer-

ences which often result in memory leaks and performance

issues in manages languages such as Java [62]. The tool al-

lows an iterative process through three tiers which assist

programmers at different levels of abstraction, from transac-
tions at the highest-level tier to lifetime relationships at the
lowest level tier.

Chameleon assists programmers in choosing an abstract

collection implementation in their algorithm [54]. During

program execution, Chameleon computes trace metrics us-

ing semantic profiling, together with a set of collection se-

lection rules, to present recommended collection adaptation

strategies to the programmers. Similarly, the PetaBricks tool

makes algorithm choice a first-class construct of the lan-

guage [4].

von Dincklage and Diwan [61] identify how tools can

benefit from guidance from the programmer in cases where

incorrect tool results would otherwise compromise its use-

fulness. For example, many refactoring operations in the

Eclipse IDE are optimistic, and do not fully check that the

result is fully legal. They propose a method to produce nec-

essary and sufficient reasons, that is, a why explanation, for

a potentially undesirable result; the programmer can then—

through applying predicates—provide feedback on whether

the given analysis result is desirable.

Finally, MrSpidey is a user-friendly, static debugger for

Scheme [22]; the program analysis computes value set de-
scriptions for each term in the program and constructs a

value flow graph connecting the set descriptions; these flows

are made visible to the programmer through a value flow

browser which overlays arrows over the program text. The

programmer can interactively expose portions of the value

graph.

3.6 Localizing
Tools present the relevant program locations for an error,

or localize errors, through two forms: 1) a point localization,
in which a program analysis tool tries to identify a single



Human-friendly output from program analysis tools PLATEAU’17, October 23, 2017, Vancouver, CA

region or line as relevant to the error, and 2) as slices, where
multiple regions are responsible for the error.

Point. Zhang et al. [63] implement, within the GHC com-

piler, a simple Bayesian type error diagnostic that identifies

the most likely source of the type error, rather than the first
source the inference engine “trips over.” The BugAssist tool
implements an algorithm for error cause localization based

on a reduction to the maximal satisfiability problem to iden-

tify the cause of an error from failing execution traces [34].

The Breadcrumbs tool uses a probabilistic calling context (es-
sentially, a stack trace) to identify the root cause of bug, by

recording extra information that might be useful in explain-

ing a failure [10].

Slices. Program slicing identifies parts of the program

that may affect a point of interest—such as those related to

an error message; Sridharan et al. [57] propose a technique

called thin slicing which helps programmers better identify

bugs because it identifies more relevant lines of code than tra-

ditional slicing. Analogous to thin slicing, Zhang et al. [65]

developed a strategy for pruning dynamic slices to identify

subsets of statements that are likely responsible for produc-

ing an incorrect value; for each statement executed in the

dynamic slice, their tool computes a confidence value, with

higher values corresponding to greater likelihood that the

execution of the statement produced a correct value.

3.7 Ranking
Ranking is a presentation feature that orders the output

of the program analysis in a systematic way. For example,

random testing tools, that is, fuzzers, can be frustrating to

use because they “indiscriminately and repeatedly find bugs

that may not be severe enough to fix right away” [14]. Chen

et al. [14] propose a technique that orders test cases in a way

that diverse, interesting cases (defined through a machine

technique called furthest point first) are highly ranked. And

the AcSpec tool prioritizes alarms for automatic program

verifiers through semantic inconsistency detection in order to

report high-confidence warnings to the programmer [9].

Coppa et al. [17] present a profiling methodology and

toolkit for helping programmers discover asymptotic inef-

ficiencies in their code. The output of the profiler is, for

each executed routine of the program, a set of tuples that

aggregate performance costs by input size—these outputs

are intended to be used as input to performance plots. The

Kremlin tool makes recommendations about which parts of

the program a programmer should spend effort parallelizing;

the tool identifies these regions through a hierarchical critical
path analysis and presents to the programmer an ordered

(by speedup) parallelism plan as a list of files and lines to

modify [23].

Perelman et al. [47] provide ranked expressions for com-

pletions in API libraries through a language of partial expres-
sions, which allows the programmer to leave “holes” for the

parts they do not know.

3.8 Reduction
Reduction approaches take a large design space of allowable

program output and reduce that space using some systematic

rule. Within this feature, Logozzo et al. introduce a static

analysis technique of Verification Modulo Versions (VMV),

which reduces the number of alarms reported by verifiers

while maintaining semantic guarantees [41]. Specifically,

VMV is designed for scenarios in which programmers desire

to fix new defects introduced since a previous release.

3.9 Tracing
Tracing is a form of slicing that involves flows of infor-

mation, and understanding how information propagates

across source code. As one example, Ohmann et al. [45]

present a system that answers control-flow queries posed

by programmers as formal languages. The tool indicates

whether the query expresses control flow that is possible
or impossible for a given failure report. As another exam-

ple, PIDGIN is a program analysis and understanding tool

that allows programmers to interactively explore informa-
tion flows—through program dependence graphs within their

applications—and investigate counterexamples [32]. Taint

analysis is another information-flow analysis that establishes

whether values from unstructured parameters may flow into

security-sensitive operations [60]; implemented as TAJ, the

tool additionally eliminates redundant reports through hy-

brid thin slicing and remediation logic over library local

points. Other techniques, such as those by Rubio-González

et al. [51], use data-flow analysis techniques to track errors

as they propagate through file system code.

To support algorithmic debugging, Faddegon and Chitil

[21] developed a library in Haskell, that, after annotating

suspected functions, presents a detailed computational tree.
Computational trees are essentially a trace to help program-

mers understand how a program works or why it does not

work. The tool TraceBack provides debugging information

for production systems by providing execution history data

about program problems [6]; it uses first-fault diagnosis to
discover what went wrong the first time the fault is encoun-

tered.

MemSAT helps programmers debug and reason about

memory models: given an axiomatic specification, the tool
outputs a trace—sequences of reads and writes—of the pro-

gram in which the specification is satisfied, or a minimal
subset of the memory model and program constraints that

are unsatisfiable [58].

The Merlin security analysis tool infers information flows
in a program to identify security vulnerabilities, such as

cross-site scripting and SQL inject attacks [40]. Internally,

the inference is based on modeling a data propagation graph
using probabilistic constraints.



PLATEAU’17, October 23, 2017, Vancouver, CA Titus Barik, Chris Parnin, and Emerson Murphy-Hill

4 Discussion
Lack of user evaluations in PL. Although we identified

and classified papers within PLDI in terms of a taxonomy of

presentation, our investigation confirms that papers either

perform no usability evaluation with programmers, or the

claims of usability of the tool are made through intuition—

using the authors of the paper as subjects. For example, con-

sider the presentation feature of alignment (Section 3.1),

in which several assumptions are made about how output

should be presented in familiar representations to the pro-

grammer. All of these assumptions appear to be intuitive—

give output in the same level of syntactic sugar as their

source code for consistency, use proof constructions com-

monly found in human proofs, and support readability. Un-

fortunately, none of these assumptions are tested with actual

programmers, reminding us of the concerns noted by Hanen-

berg and others in the introduction. It seems likely that some

of these assumptions are actually incorrect, which may ex-

plain the lack of adoption in practice and the confusing tool

output programmers report for many of these sophisticated

program analysis tools.

Lack of operational tools in HCI. At the same time,

HCI researchers perform usability studies on user interfaces,

yet the experiments they conduct are understandably eval-

uated against representative tool experiences, rather than

the multiplicity of corner cases that occur in practice. Conse-

quently, even if the user interfaces are found to be effective

or usable for some measures, the tools themselves cannot

actually be used in practice. Regrettably, this means that user

interface advances remain within academic papers, and do

not ever make it to actual programmers without significant

investment in tools that may not even be possible to build

due to fundamental, technical limitations.

Bridging PL and HCI. In our view, both deficiencies in

PL and HCI can be reduced by fostering collaborations be-

tween the disciplines. A cross-disciplinary approach to tool

development would enable usable program analysis tools,

by having a pipeline from program analysis tools to user

evaluations in HCI. HCI contributions could then feedback

to PL to further improve the output of program analysis tools.

But doing so requires a cross-disciplinary community that

can provide such opportunities for collaboration. We suggest

that PLATEAU has the potential to become this community.

5 Conclusions
In this paper, we conducted a scoping review of PLDI from

the period of 1988-2017. In the review, we identified and

cataloged papers for program analysis tools that discussed

or made contributions to the presentation of output towards

programmers. Admittedly, a scoping review is only a starting

point for investigation, and can only provide interim guid-

ance. Nevertheless, our hope is that the scoping review we

have conducted can serve to bootstrap future, comprehen-

sive systematic literature reviews. We are open to feedback

on practical methods to realizing that goal.

Acknowledgments
This material is based upon work supported by the National

Science Foundation under Grant No. 1714538.

References
[1] Gregory D Abowd and Russell Beale. 1991. Users, systems and inter-

faces: A unifying framework for interaction. In People and Computers
VI. 73–87.

[2] Ali-Reza Adl-Tabatabai and Thomas Gross. 1996. Source-level debug-

ging of scalar optimized code. In Proceedings of the ACM SIGPLAN
1996 Conference on Programming Language Design and Implementation
(PLDI ’96). ACM, 33–43. https://doi.org/10.1145/231379.231388

[3] Glenn Ammons, David Mandelin, Rastislav Bodík, and James R. Larus.

2003. Debugging temporal specifications with concept analysis. In

Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI ’03). ACM, 182–195. https:
//doi.org/10.1145/781131.781152

[4] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,

Alan Edelman, and Saman Amarasinghe. 2009. PetaBricks: A language

and compiler for algorithmic choice. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’09). ACM, 38–49. https://doi.org/10.1145/1542476.1542481

[5] H Arksey and L O’Malley. 2005. Scoping studies: Towards a method-

ological framework. Int J Soc Res Methodol 8 (2005).
[6] AndrewAyers, Richard Schooler, Chris Metcalf, Anant Agarwal, Jungh-

wan Rhee, and Emmett Witchel. 2005. TraceBack: First fault di-

agnosis by reconstruction of distributed control flow. In Proceed-
ings of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI ’05). ACM, 201–212. https:
//doi.org/10.1145/1065010.1065035

[7] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng,

Emerson Murphy-Hill, and Chris Parnin. 2017. Do developers read

compiler error messages?. In Proceedings of the 39th International Con-
ference on Software Engineering (ICSE ’17). IEEE Press, Piscataway, NJ,

USA, 575–585. https://doi.org/10.1109/ICSE.2017.59
[8] Titus Barik, Jim Witschey, Brittany Johnson, and Emerson Murphy-

Hill. 2014. Compiler error notifications revisited: An interaction-

first approach for helping developers more effectively comprehend

and resolve error notifications. In Companion Proceedings of the 36th
International Conference on Software Engineering (ICSE Companion
2014). ACM, 536–539. https://doi.org/10.1145/2591062.2591124

[9] Sam Blackshear and Shuvendu K. Lahiri. 2013. Almost-correct spec-

ifications: A modular semantic framework for assigning confidence

to warnings. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’13). ACM,

209–218. https://doi.org/10.1145/2491956.2462188
[10] Michael D. Bond, Graham Z. Baker, and Samuel Z. Guyer. 2010. Bread-

crumbs: Efficient context sensitivity for dynamic bug detection analy-

ses. In Proceedings of the 31st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’10). ACM, 13–24.

https://doi.org/10.1145/1806596.1806599
[11] Gary Brooks, Gilbert J. Hansen, and Steve Simmons. 1992. A new

approach to debugging optimized code. In Proceedings of the ACM SIG-
PLAN 1992 Conference on Programming Language Design and Implemen-
tation (PLDI ’92). ACM, 1–11. https://doi.org/10.1145/143095.143108

[12] P. J. Brown. 1983. Error messages: The neglected area of the

man/machine interface. Commun. ACM 26, 4 (April 1983), 246–249.

https://doi.org/10.1145/2163.358083

https://doi.org/10.1145/231379.231388
https://doi.org/10.1145/781131.781152
https://doi.org/10.1145/781131.781152
https://doi.org/10.1145/1542476.1542481
https://doi.org/10.1145/1065010.1065035
https://doi.org/10.1145/1065010.1065035
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1145/2591062.2591124
https://doi.org/10.1145/2491956.2462188
https://doi.org/10.1145/1806596.1806599
https://doi.org/10.1145/143095.143108
https://doi.org/10.1145/2163.358083


Human-friendly output from program analysis tools PLATEAU’17, October 23, 2017, Vancouver, CA

[13] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean

McDirmid, Michal Moskal, Nikolai Tillmann, and Jun Kato. 2013. It’s

alive! Continuous feedback in UI programming. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’13). ACM, 95–104. https://doi.org/10.1145/
2491956.2462170

[14] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli

Fern, Eric Eide, and John Regehr. 2013. Taming compiler fuzzers. In

Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’13). ACM, 197–208. https:
//doi.org/10.1145/2491956.2462173

[15] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Prac-

tical memory leak detection using guarded value-flow analysis. In

Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’07). ACM, 480–491. https:
//doi.org/10.1145/1250734.1250789

[16] Maria Christakis and Christian Bird. 2016. What developers want and

need from program analysis: An empirical study. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering - ASE 2016. ACM Press, 332–343. https://doi.org/10.1145/
2970276.2970347

[17] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. 2012. Input-

sensitive profiling. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’12). ACM,

89–98. https://doi.org/10.1145/2254064.2254076
[18] D. S. Coutant, S. Meloy, and M. Ruscetta. 1988. DOC: A practical

approach to source-level debugging of globally optimized code. In

Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation (PLDI ’88). ACM, 125–134. https:
//doi.org/10.1145/53990.54003

[19] Natasha Danas, Tim Nelson, Lane Harrison, Shriram Krishnamurthi,

and Daniel J Dougherty. 2017. User studies of principled model

finder output. In International Conference on Software Engineering
and Formal Methods. Springer, 168–184. https://doi.org/10.1007/
978-3-319-66197-1_11

[20] Isil Dillig, Thomas Dillig, and Alex Aiken. 2012. Automated error

diagnosis using abductive inference. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’12). ACM, 181–192. https://doi.org/10.1145/2254064.
2254087

[21] Maarten Faddegon and Olaf Chitil. 2016. Lightweight computation

tree tracing for lazy functional languages. In Proceedings of the 37th
ACM SIGPLANConference on Programming Language Design and Imple-
mentation (PLDI ’16). ACM, 114–128. https://doi.org/10.1145/2908080.
2908104

[22] Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie

Weirich, and Matthias Felleisen. 1996. Catching bugs in the web of

program invariants. In Proceedings of the ACM SIGPLAN 1996 Confer-
ence on Programming Language Design and Implementation (PLDI ’96).
ACM, 23–32. https://doi.org/10.1145/231379.231387

[23] Saturnino Garcia, Donghwan Jeon, Christopher M. Louie, and

Michael Bedford Taylor. 2011. Kremlin: Rethinking and rebooting gprof

for the multicore age. In Proceedings of the 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’11). ACM, 458–469. https://doi.org/10.1145/1993498.1993553

[24] Maria J. Grant and Andrew Booth. 2009. A typology of reviews: An

analysis of 14 review types and associated methodologies. Health
Information & Libraries Journal 26, 2 (June 2009), 91–108. https://doi.
org/10.1111/j.1471-1842.2009.00848.x

[25] David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein.

2014. Don’t sweat the small stuff: Formal verification of C code with-

out the pain. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’14). ACM,

429–439. https://doi.org/10.1145/2594291.2594296

[26] Jungwoo Ha, Christopher J. Rossbach, Jason V. Davis, Indrajit Roy,

Hany E. Ramadan, Donald E. Porter, David L. Chen, and Emmett

Witchel. 2007. Improved error reporting for software that uses black-

box components. In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’07). ACM,

101–111. https://doi.org/10.1145/1250734.1250747
[27] Stefan Hanenberg. 2010. Faith, hope, and love: An essay on soft-

ware science’s neglect of human factors. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA ’10). ACM, 933–946. https:
//doi.org/10.1145/1869459.1869536

[28] Kevin J. Hoffman, Patrick Eugster, and Suresh Jagannathan. 2009.

Semantics-aware trace analysis. In Proceedings of the 30th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’09). ACM, 453–464. https://doi.org/10.1145/1542476.
1542527

[29] Susan Horwitz. 1990. Identifying the semantic and textual differences

between two versions of a program. In Proceedings of the ACM SIGPLAN
1990 Conference on Programming Language Design and Implementation
(PLDI ’90). ACM, 234–245. https://doi.org/10.1145/93542.93574

[30] Chinawat Isradisaikul and Andrew C. Myers. 2015. Finding counterex-

amples from parsing conflicts. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’15). ACM, 555–564. https://doi.org/10.1145/2737924.2737961

[31] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011.

Automated atomicity-violation fixing. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’11). ACM, 389–400. https://doi.org/10.1145/1993498.
1993544

[32] Andrew Johnson, Lucas Waye, Scott Moore, and Stephen Chong. 2015.

Exploring and enforcing security guarantees via program dependence

graphs. In Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’15). ACM, 291–

302. https://doi.org/10.1145/2737924.2737957
[33] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert

Bowdidge. 2013. Why don’t software developers use static analysis

tools to find bugs?. In 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 672–681. https://doi.org/10.1109/ICSE.2013.
6606613

[34] Manu Jose and Rupak Majumdar. 2011. Cause clue clauses: Error local-

ization using maximum satisfiability. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’11). ACM, 437–446. https://doi.org/10.1145/1993498.
1993550

[35] Barbara Kitchenham. 2004. Procedures for performing systematic

reviews. Keele, UK, Keele University 33, 2004 (2004), 1–26.

[36] Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Cham-

bers. 2007. Searching for type-error messages. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’07). ACM, 425–434. https://doi.org/10.1145/
1250734.1250783

[37] Alan Leung, John Sarracino, and Sorin Lerner. 2015. Interactive parser

synthesis by example. In Proceedings of the 36th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’15). ACM, 565–574. https://doi.org/10.1145/2737924.2738002

[38] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. 2003.

Bug isolation via remote program sampling. In Proceedings of the
ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation (PLDI ’03). ACM, 141–154. https://doi.org/10.1145/
781131.781148

[39] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I.

Jordan. 2005. Scalable statistical bug isolation. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’05). ACM, 15–26. https://doi.org/10.1145/

https://doi.org/10.1145/2491956.2462170
https://doi.org/10.1145/2491956.2462170
https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/1250734.1250789
https://doi.org/10.1145/1250734.1250789
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2254064.2254076
https://doi.org/10.1145/53990.54003
https://doi.org/10.1145/53990.54003
https://doi.org/10.1007/978-3-319-66197-1_11
https://doi.org/10.1007/978-3-319-66197-1_11
https://doi.org/10.1145/2254064.2254087
https://doi.org/10.1145/2254064.2254087
https://doi.org/10.1145/2908080.2908104
https://doi.org/10.1145/2908080.2908104
https://doi.org/10.1145/231379.231387
https://doi.org/10.1145/1993498.1993553
https://doi.org/10.1111/j.1471-1842.2009.00848.x
https://doi.org/10.1111/j.1471-1842.2009.00848.x
https://doi.org/10.1145/2594291.2594296
https://doi.org/10.1145/1250734.1250747
https://doi.org/10.1145/1869459.1869536
https://doi.org/10.1145/1869459.1869536
https://doi.org/10.1145/1542476.1542527
https://doi.org/10.1145/1542476.1542527
https://doi.org/10.1145/93542.93574
https://doi.org/10.1145/2737924.2737961
https://doi.org/10.1145/1993498.1993544
https://doi.org/10.1145/1993498.1993544
https://doi.org/10.1145/2737924.2737957
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.1145/1993498.1993550
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/2737924.2738002
https://doi.org/10.1145/781131.781148
https://doi.org/10.1145/781131.781148
https://doi.org/10.1145/1065010.1065014
https://doi.org/10.1145/1065010.1065014


PLATEAU’17, October 23, 2017, Vancouver, CA Titus Barik, Chris Parnin, and Emerson Murphy-Hill

1065010.1065014
[40] Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya

Banerjee. 2009. Merlin: Specification inference for explicit information

flow problems. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’09). ACM,

75–86. https://doi.org/10.1145/1542476.1542485
[41] Francesco Logozzo, Shuvendu K. Lahiri, Manuel Fähndrich, and Sam

Blackshear. 2014. Verification modulo versions: Towards usable verifi-

cation. In Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’14). ACM, 294–304.

https://doi.org/10.1145/2594291.2594326
[42] David Menendez and Santosh Nagarakatte. 2017. Alive-Infer: Data-

driven precondition inference for peephole optimizations in LLVM.

In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’17). ACM, 49–63. https:
//doi.org/10.1145/3062341.3062372

[43] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Ed-

wards, and Brad Calder. 2007. Automatically classifying benign and

harmful data races using replay analysis. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’07). ACM, 22–31. https://doi.org/10.1145/1250734.1250738

[44] Phúc C. Nguyen and David Van Horn. 2015. Relatively complete

counterexamples for higher-order programs. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’15). ACM, 446–456. https://doi.org/10.1145/
2737924.2737971

[45] Peter Ohmann, Alexander Brooks, Loris D’Antoni, and Ben Liblit. 2017.

Control-flow recovery from partial failure reports. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’17). ACM, 390–405. https://doi.org/10.1145/
3062341.3062368

[46] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and

Sharon Shoham. 2016. Ivy: Safety verification by interactive gen-

eralization. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’16). ACM,

614–630. https://doi.org/10.1145/2908080.2908118
[47] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman.

2012. Type-directed completion of partial expressions. In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’12). ACM, 275–286. https://doi.org/10.1145/
2254064.2254098

[48] Justin Pombrio and Shriram Krishnamurthi. 2014. Resugaring: Lifting

evaluation sequences through syntactic sugar. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’14). ACM, 361–371. https://doi.org/10.1145/
2594291.2594319

[49] Xiaokang Qiu, Pranav Garg, Andrei Ştefănescu, and Parthasarathy

Madhusudan. 2013. Natural proofs for structure, data, and separation.

In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’13). ACM, 231–242. https:
//doi.org/10.1145/2491956.2462169

[50] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison,

and Xuejun Yang. 2012. Test-case reduction for C compiler bugs.

In Proceedings of the 33rd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’12). ACM, 335–346.

https://doi.org/10.1145/2254064.2254104
[51] Cindy Rubio-González, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-

Dusseau, and Andrea C. Arpaci-Dusseau. 2009. Error propagation

analysis for file systems. In Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’09). ACM, 270–280. https://doi.org/10.1145/1542476.1542506

[52] Holger J Schünemann and Lorenzo Moja. 2015. Reviews: Rapid! Rapid!

Rapid! . . . and systematic. Systematic Reviews 4, 1 (2015), 4. https:
//doi.org/10.1186/2046-4053-4-4

[53] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandil-

ian, and Robert Bowdidge. 2014. Programmers’ build errors: A

case study (at Google). In Proceedings of the 36th International Con-
ference on Software Engineering - ICSE 2014. ACM Press, 724–734.

https://doi.org/10.1145/2568225.2568255
[54] Ohad Shacham, Martin Vechev, and Eran Yahav. 2009. Chameleon:

Adaptive selection of collections. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’09). ACM, 408–418. https://doi.org/10.1145/1542476.
1542522

[55] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013.

Automated feedback generation for introductory programming assign-

ments. SIGPLAN Not. 48, 6 (June 2013), 15–26. https://doi.org/10.1145/
2499370.2462195

[56] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik.

2008. Sketching concurrent data structures. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’08). ACM, 136–148. https://doi.org/10.1145/
1375581.1375599

[57] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. 2007. Thin slic-

ing. In Proceedings of the 28th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’07). ACM, 112–122.

https://doi.org/10.1145/1250734.1250748
[58] Emina Torlak, Mandana Vaziri, and Julian Dolby. 2010. MemSAT:

Checking axiomatic specifications of memory models. In Proceedings
of the 31st ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’10). ACM, 341–350. https://doi.org/10.1145/
1806596.1806635

[59] V. Javier Traver. 2010. On compiler error messages: What they say

and what they mean. Advances in Human-Computer Interaction 2010

(2010), 1–26. https://doi.org/10.1155/2010/602570
[60] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri

Weisman. 2009. TAJ: Effective taint analysis of web applications. In

Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’09). ACM, 87–97. https:
//doi.org/10.1145/1542476.1542486

[61] Daniel von Dincklage and Amer Diwan. 2008. Explaining failures of

program analyses. In Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’08). ACM,

260–269. https://doi.org/10.1145/1375581.1375614
[62] Guoqing Xu, Michael D. Bond, Feng Qin, and Atanas Rountev. 2011.

LeakChaser: Helping programmers narrow down causes of memory

leaks. In Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’11). ACM, 270–282.

https://doi.org/10.1145/1993498.1993530
[63] Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon

Peyton-Jones. 2015. Diagnosing type errors with class. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’15). ACM, 12–21. https://doi.org/10.1145/
2737924.2738009

[64] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal pro-

gram enumeration for rigorous compiler testing. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’17). ACM, 347–361. https://doi.org/10.1145/
3062341.3062379

[65] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Pruning dy-

namic slices with confidence. In Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’06). ACM, 169–180. https://doi.org/10.1145/1133981.1134002

https://doi.org/10.1145/1065010.1065014
https://doi.org/10.1145/1542476.1542485
https://doi.org/10.1145/2594291.2594326
https://doi.org/10.1145/3062341.3062372
https://doi.org/10.1145/3062341.3062372
https://doi.org/10.1145/1250734.1250738
https://doi.org/10.1145/2737924.2737971
https://doi.org/10.1145/2737924.2737971
https://doi.org/10.1145/3062341.3062368
https://doi.org/10.1145/3062341.3062368
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2254064.2254098
https://doi.org/10.1145/2254064.2254098
https://doi.org/10.1145/2594291.2594319
https://doi.org/10.1145/2594291.2594319
https://doi.org/10.1145/2491956.2462169
https://doi.org/10.1145/2491956.2462169
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/1542476.1542506
https://doi.org/10.1186/2046-4053-4-4
https://doi.org/10.1186/2046-4053-4-4
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1145/1542476.1542522
https://doi.org/10.1145/1542476.1542522
https://doi.org/10.1145/2499370.2462195
https://doi.org/10.1145/2499370.2462195
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/1806596.1806635
https://doi.org/10.1145/1806596.1806635
https://doi.org/10.1155/2010/602570
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1145/1542476.1542486
https://doi.org/10.1145/1375581.1375614
https://doi.org/10.1145/1993498.1993530
https://doi.org/10.1145/2737924.2738009
https://doi.org/10.1145/2737924.2738009
https://doi.org/10.1145/3062341.3062379
https://doi.org/10.1145/3062341.3062379
https://doi.org/10.1145/1133981.1134002

	Abstract
	1 Introduction
	2 Methodology
	2.1 What is a Scoping Review?
	2.2 Execution of SALSA Framework
	2.3 Limitations

	3 Taxonomy of Presentation
	3.1 Alignment
	3.2 Clustering and Classification
	3.3 Comparing
	3.4 Example
	3.5 Interactivity
	3.6 Localizing
	3.7 Ranking
	3.8 Reduction
	3.9 Tracing

	4 Discussion
	5 Conclusions
	Acknowledgments
	References

