
Understanding Screen Relationships from Screenshots of
Smartphone Applications

Shirin Feiz∗
Stony Brook University
Stony Brook, NY, USA

sfeizdisfani@cs.stonybrook.edu

Jason Wu†
HCI Institute, Carnegie Mellon

University
Pittsburgh, PA, USA
jsonwu@cmu.edu

Xiaoyi Zhang
Apple

Cupertino, CA, USA
xiaoyiz@apple.com

Amanda Swearngin
Apple

Cupertino, CA, USA
amaswea@cs.washington.edu

Titus Barik
Apple

Cupertino, CA, USA
titus.barik@apple.com

Jeffrey Nichols
Apple

Cupertino, CA, USA
jwnichols@apple.com

Figure 1: Screenshots of the keynote app separated into two groups of “same” screens. Screenshots in Group 1 demonstrate
six types of events on the “original screen”. In this paper we present two models: (1) a screen similarity model to recognize
instances of the same screen from a collection of screenshots from a single app, and (2) a screen transition model to identify
different types of events that appear in an interaction trace.

ABSTRACT
All graphical user interfaces are comprised of one or more screens
that may be shown to the user depending on their interactions.
Identifying different screens of an app and understanding the type
of changes that happen on the screens is a challenging task that can
be applied in many areas including automatic app crawling, play-
back of app automation macros and large scale app dataset analysis.
For example, an automated app crawler needs to understand if the
screen it is currently viewing is the same as any previous screen
that it has encountered, so it can focus its efforts on portions of the
app that it has not yet explored. Moreover, identifying the type of

∗This work was done while Shirin Feiz was an intern at Apple.
†This work was done while Jason Wu was an intern at Apple.

This work is licensed under a Creative Commons Attribution International
4.0 License.

IUI ’22, March 21–25, 2022, Helsinki, Finland
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9144-3/22/03.
https://doi.org/10.1145/3490099.3511109

change on the screen, such as whether any dialogues or keyboards
have opened or closed, is useful for an automatic crawler to handle
such events while crawling. Understanding screen relationships
is a difficult task as instances of the same screen may have visual
and structural variation, for example due to different content in
a database-backed application, scrolling, dialog boxes opening or
closing, or content loading delays. At the same time, instances of
different screens from the same app may share some similarities in
terms of design, structure, and content. This paper uses a dataset
of screenshots from more than 1K iPhone applications to train
two ML models that understand similarity in different ways: (1) a
screen similarity model that combines a UI object detector with a
transformer model architecture to recognize instances of the same
screen from a collection of screenshots from a single app, and (2) a
screen transition model that uses a siamese network architecture
to identify both similarity and three types of events that appear
in an interaction trace: the keyboard or a dialog box appearing or
disappearing, and scrolling. Our models achieve an F1 score of 0.83
on the screen similarity task, improving on comparable baselines,
and an average F1 score of 0.71 across all events in the transition
task.

447

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3490099.3511109

IUI ’22, March 21–25, 2022, Helsinki, Finland Feiz et al.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).

KEYWORDS
user interface similarity, ui modeling, ui semantics

ACM Reference Format:
Shirin Feiz, Jason Wu, Xiaoyi Zhang, Amanda Swearngin, Titus Barik,
and Jeffrey Nichols. 2022. Understanding Screen Relationships from Screen-
shots of Smartphone Applications. In 27th International Conference on Intel-
ligent User Interfaces (IUI ’22), March 21–25, 2022, Helsinki, Finland. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3490099.3511109

1 INTRODUCTION
Systems that seek to understand an app user interface must be able
to identify the different screens of an app and understand how those
different screens are related to each other. Understanding an app
user interface in this way is useful in a number of different settings.
For example, an automated app crawler needs to understand if the
screen it is currently viewing is the same as any previous screen that
it has encountered, so it can focus its efforts on portions of the app
that it has not yet explored. Similarly, systems that replay previously
recorded UI actions must be able to identify whether a screen seen
in the recording is the same as the screen seen during playback in
order to knowwhether the replay is proceeding successfully. Finally,
UI analysis tools can be improved with techniques that employ
screen detection to reduce noise, which could be particular useful
for gaining insights from large UI datasets, such as Rico [9, 10].

In our work, we focus on determining screen relationships solely
from pixel information, specifically through screenshots.We choose
this approach because it can be applied generally across many differ-
ent types of apps regardless of their underlying implementation and
choice of UI toolkits. Other methods have made use of underlying
representations, such as view hierarchies on the Android platform.
For instance, [9, 22, 26, 39] use view hierarchy information to de-
termine the available UI elements and their layout on the screen.
Unfortunately, this method is specific to Android user interfaces
that expose a well-formed view hierarchy, such as those built with
the standard toolkit, and may not be applicable to UIs implemented
in alternate toolkits, such as Flutter.

Detecting whether two screens are similar is a challenging prob-
lem, and can be defined in different ways for different tasks. For
example, in a design search task as in Rico [9], Swire [18] or
Screen2Vec [21], the goal is to search a dataset of many apps using
a query screenshot to find many screens with similar elements and
functionality from many different kinds of apps. In our work, we
focus on the screen similarity task within apps, which is relevant
for systems that must automatically navigate within an app. These
systems must be able to identify whether a screen they have visited
before is the same as the screen they are currently visiting, even if
the content of that screen differs due to changes in the UI state. For
example, an instance of a shopping cart screen in a retail app must
be recognizable as the same screen regardless of how many items
appear in the cart. Similarly, instances of a product screen should
be recognizable as the same screen if the same layout template
is used, even if the product being displayed is different. Different

scroll positions of the screen or the presence of a dialog box or an
on-screen keyboard can further complicate this problem.

In this paper, we train two machine learning models to infer
whether two screens are similar and to identify whether any of 6
common events have occurred. We formulate these two problems
as follows:

• Screen Similarity: A binary classification problem in which
two screenshots are given as input and the task is to predict
whether they are images of the same screen or not. The only
assumption is that the screenshots are from the same app.

• Screen Transition: Assumes two input images are consecu-
tive screenshots collected during an interaction trace. The
binary classification of same screen or not remains a part of
the problem, but we introduce the additional sub-problem
of recognizing whether one or more of six common events
have occurred including scrolling, and the appearance or dis-
appearance of app dialog boxes, system dialog boxes, bottom
dialog boxes, notifications, keyboards. We chose these six
events based on our own inspection of sequences of interac-
tion data from 1,110 apps. This extra information is useful
to help guide automation and crawling algorithms as they
interact with an app.

In order to train our models, we collected a dataset of over 77k
screenshots from 1,110 different iPhone applications, which were
produced by human crowd workers traversing each app for approx-
imately 15 minutes. A separate group of crowd workers annotated
this data with similarity and transition information.

Our screen similarity model is a combination of a UI element
detector [28], which extracts and featurizes on-screen UI elements
from a screenshot, and a transformer [31] that jointly encodes and
classifies the relationship between two screens. Our approach is
informed by prior work in UI understanding [34] and text-based
visual question answering [17, 29, 30], both of which model the
relationship between several multi-modal elements. Our results
show that our model achieved an F1 score of 0.83 over our datset,
outperforming existing methods.

Our screen transition model is a siamese network [13] that is
trained to generate an embedding vector from an app UI’s screen-
shot. The goal is for the difference between two screen embeddings
to encode the presence of one of the six event types, and thus predict
the transitions between two related screens (e.g., the appearance
of an application or system dialog). We train this model on both
the screen similarity and transition problems. While we find that
its performance on screen similarity lags the transformer model
described above, we also found that the inclusion of this problem
during training resulted in better model performance on the transi-
tion task than when the model was trained on the transition task
alone. We also found that our set of six events were difficult for
our model to distinguish, and combined the dialog and notification
events into a single category resulting in three final types. To the
best of our knowledge, our screen transition model is first of its
kind. It achieves an average F1 score of 0.71 across the 3 transition
types.

This paper begins with an examination of related work, which
provides inspiration and also the baselines that we use to evaluate

448

https://doi.org/10.1145/3490099.3511109

Understanding Screen Relationships from Screenshots of Smartphone Applications IUI ’22, March 21–25, 2022, Helsinki, Finland

the screen similarity model. We then discuss our data collection be-
fore diving into the screen similarity model in depth, describing the
annotation process, baselines, model training and evaluation. We
then discuss our screen transition model from annotation through
evaluation, our results as a whole, and then conclude.

2 RELATEDWORK
The vast majority of systems have not used pixels to determine
whether screens were similar, but instead resorted to using avail-
able underlying representations of the user interface, such as view
hierarchies on the Android platform. Our work relies entirely on
the pixels of the user interface, allowing it to operate when a non-
standard UI toolkit is used to build the user interface or if the
underlying data is not available due to platform limitations.

This previous research has defined “similar screens” in various
ways and has presented methods for identifying similar screens as
a sub-goal across several different applications. These applications
have included user interface testing, bug report understanding, and
user interface dataset search.

2.1 User Interface Testing & Bug Reports
Automatic UI testing often has a need for identifying the relation-
ship between the screens of the app to understand the structure
of the app. MobiGuitar [2], an early Android-based automated test
tool, made use of “GUI Ripping” to extract the state machine of
an app. This tool identifies similar states as they are encountered,
and ultimately produces a directed graph of UI states. Determining
whether a state is the same included understanding the screen,
which was accomplished by inspecting the view hierarchy and
other underlying data about the interface specific to the Android
platform. Other crawlers [6, 19, 23], including DroidBot [22], and
other crawling algorithms [33, 36], including NFS [25], also rely on
similar methods of using the view hierarchy to identify that an app
is the same state. For instance, PUMA [14] and DECAF [24] define
an encoding of the structure of the view hierarchy and define sim-
ilarity based on the distance between the embeddings. Our work
seeks to achieve a similar goal, but uses only pixel information
and not any additional underlying UI data. These systems are also
frequently evaluated in terms of code coverage or other test-related
metrics, which makes it difficult to determine how successfully
their similar state algorithms function and also complicates direct
comparison with our work.

Another UI testing system called AppFlow [16] synthesizes
reusable UI tests across different apps in a similar category, such as
shopping cart apps. AppFlow includes a screen recognition model
that uses screen layout represented as a string, OCR, and Android
Activity titles to train a model to recognize similar screen types
across applications. Pixel information is only used via OCR to ex-
tract text from the user interface, and it also relies on underlying UI
representations that are only available from the Android platform.

Several systems have sought to help developers manage bug re-
ports in various ways through joint modeling of screenshot features
and textual bug reports. Yu et al. [37] help developers prioritize bug
reports, similarly ReCDroid [40] automatically recreates crashes.
Work by Wang et al. [32] uses a multi-modal fusion of screenshot
features and textual bug reports to identify duplicate bug reports.

In this work, they do not feed images directly into the model, but
instead extract two image features and use them as inputs. They do
compare image-only and text-only approaches to their fused result
and find that the image-only detector generally underperformed
the text-based classifier. All of these systems rely on bug report
text as an important input to their process, whereas our work relies
solely only on image data.

2.2 UI Understanding
A number of systems have explored helping developers and design-
ers understand existing app user interfaces, either at the overall
application level or specifically at the screen level. The motiva-
tion for this work is often to provide inspiration for a new design
through exploration of existing potentially related designs. For in-
stance, [5] creates a searchable gallery of UI element designs based
on the app screenshots along with information regarding each
application. Other works has been inspired by the availability of
large-scale datasets, such as Rico [9], which are too large to browse
effectively.

From App Metadata & View Hierarchies:
Many systems in this area have relied on app metadata or An-

droid view hierarchies as the basis for their operation.
StoryDroid [7] extracts a storyboard of an Android app from

the structured data included in an app’s APK file. The extracted
storyboard can then be displayed as a reference for app designers or
used to compare one or more apps with one another. Our work in
this paper can be reapplied to extract similar storyboards, though
entirely from screenshots and without requiring inspection of the
app binary. While StoryDroid focuses on the design of an entire app,
much more work has explored search in terms of a single screen.
Like the systems we’ve seen already, many rely on underlying UI
data to learn a searchable representation of a screen at various
levels of complexity.

NEAR [35] seeks to detect near-duplicate pages on the web. It
addresses much the same problem as we examine in this paper,
except that it uses the DOM tree as its primary input and works
only in the web context.

Zhang et al. [39] define a set of screen equivalency heuristics
based on identifiers and semantic structures found in Android view
hierarchies to determine screen equivalence for accessibility anno-
tation.

The creators of Rico [9] used the Android view hierarchy to
compute a basic image representation of screens from the UI’s
textual and non-textual elements, and trained an autoencoder based
on this representation. The autoencoder was shown to be useful
for UI screen search across the dataset.

Building on this work, Liu et al. [26] learned deeper semantic
models of UI elements from the view hierarchy and icons from
pixels. They used these in combination to produce a semantic rep-
resentation of a screen, which their model fed into a autoencoder
similar to the Rico approach. They demonstrated this produced
superior results to the simpler Rico model.

Enrico [20] extends this work even further and explores topic
modeling of screens, also using an autoencoder-based approach.

449

IUI ’22, March 21–25, 2022, Helsinki, Finland Feiz et al.

Topics cross different apps and are useful for a number of applica-
tions, but do not seem to be at a fine-grained enough level to be
applied to the screen similarity problem discussed here.

Screen2Vec [21] builds on these autoencoder-based approaches,
adds multi-modal features from both the textual and layout content
of the UI in a two-layer model, and is trained via a self-supervised
method. Screen similarity for the purpose of UI search across a
dataset is explored, among other applications. Screen2Vec, like the
other methods described so far, relies entirely on underlying view
hierarchy information available on the Android platform and does
not use any pixel data in its inputs.

From Pixels:
Some systems have explored understanding the user interface

from pixels alone, but have limitations for our application area.
PuppetDroid [12] uses a perceptual hash to identify similar

screens, courtesy of the pHash library 1. Hashes were used to iden-
tify similar screens of known good apps in suspected malware apps
as part of a method to detect malware. We include pHash, as well as
other hashing methods from a common image hash library (wHash
and dHash), as baseline methods to evaluate the performance of
our screen similarity model.

Chiatti et al. [8] explores clustering of screenshots across apps
using unsupervised and semi-supervised methods. Their primary
focus is to create clusters that would assist in a behavioral usage
study, and it does not seem that their clusters would have enough
granularity to be applicable to our screen similarity problem.

Malisa et al. [27] attempt to determine whether a login screen
is spoofed or not based on an understanding of visual cues that
humans tend to ignore. They train a model based on features ex-
tracted from screenshots that are specifically chosen to identify
visual cues that are likely to be ignored by human viewers. This
work is related to our method in that it compares a reference screen
to the currently displayed screen, but the assumptions are very
application-specific.

Screen Recognition [38] is a system that detects the location and
type of UI elements on an iOS screen entirely from the on-screen
pixels. The result is used in accessibility services when the current
app does not contain any accessibility meta-data. This work does
not attempt to detect similar screens directly, however its output
could be used as a source of data similar to the view hierarchies
used in the systems described earlier. One of our baseline similar-
ity algorithms uses a similar object detection algorithm and then
heuristically compares the elements that are identified across two
screens.

Screen Parsing [34] is another system in a similar vein, which
detects UI elements from pixels and also infers their hierarchy.
Similarly VINS [3] applies object detection to detect UI elements
and a neural network to learn the layout structure. UI similarity
search are demonstrated applications of these works, though the
focus seems to be on search across screens from different apps rather
than within a single app. In addition, both of these methods focus on
characterizing screens by their layout information (i.e., location and
type of on-screen elements) and do not take into account additional
visual information such as element appearance (e.g., element color)
that could provide additional cues for our task. In contrast, the

1https://www.phash.org

featurized vectors produced by our UI object detector do incorporate
appearance, which are then consumed by the transformer portion
of our screen similarity model.

Swire [18] enables searching a dataset of GUI screenshots using
a sketch image as input. This is accomplished by training a joint em-
bedding between sketch images and real screenshots using a triplet
loss function. Swire’s method is similar to the siamese network that
we use for our screen transition model, however the focus again is
on searching across screens from different apps rather than within
a single app.

3 DATA COLLECTION
The same app dataset is used as the basis for all of our work in this
paper, so we describe its collection first before separately examining
how we further annotate and train models for the similarity and
transition problems.

We collected a dataset of screenshots from 1,110 popular free
iPhone apps as listed in the Apple App Store. We excluded apps
from the various Game and AR app categories, as these apps often
have non-traditional interfaces without clearly segmented screens.

A third-party data collection company collected the dataset,
which our organization paid a large flat-fee for the entire job. That
company in turn employed a set of 36 English speaking crowdwork-
ers from the United States, who were paid at least the minimum
wage for their locale (exact payment varied based on the volume of
data collected).

Workers visited a web site, through which multiple tasks were
available. Each task presented a real iPhone device with which the
workers could interact using a remote desktop-style interface. For
each task, we asked them to explore the presented app as thoroughly
as possible within 15 minutes. Our custom data collection tool
captured automatic screenshots every second provided the screen
content had changed.

We post-processed the data set and dropped any duplicate con-
secutive screenshots. To do so, we examined the pixel similarity of
each pair of two consecutive screenshots. First, we discarded the
top status bar of both screenshots, because this area often contains
information that may change but is unrelated to the app, such as
the time and battery level. We then applied a template matching
algorithm with normalized correlation coefficient to compare the
images and used an empirical threshold (98%) to detect and drop
duplicates. The final dataset is comprised of 77,655 non-identical
screenshots.

4 SCREEN SIMILARITY
To find whether two screens of an application are the same, we (1)
carried out an annotation task to determine which screens in our
collected dataset were the same, (2) used the resulting annotated
dataset to train a model that can predict screen similarity, and (3)
evaluated our model in comparison to previous methods.

4.1 Screen Similarity: Annotation
We annotated screenshots of each app into groups of same screens.
To make the annotation task easier, workers first annotated each
pair of consecutive screenshots as either same or new in order to
identify and merge sequences of consecutive same screenshots in

450

Understanding Screen Relationships from Screenshots of Smartphone Applications IUI ’22, March 21–25, 2022, Helsinki, Finland

Figure 2: Annotation interface for grouping same screen-
shots of an app as a card-sorting task. The annotator can
drag and drop screenshots (cards) to build stacks of same
screenshots.

the user interaction trace. In this step, the workers marked 49% of
the screenshot pairs the same.

We built an annotation interface to enable workers to group
screenshots as a card sorting task (see Figure 2). This interface
allows the annotator to group same screenshots with drag and drop
actions. Splits and merges of existing groups are supported in this
interface. Also, annotators can expand current groups to re-visit
the screenshots or move any mis-grouped screenshots and place
them in another group.

The workers used our interface to group the screenshots of a
single app in the dataset, and we instructed them to stop when each
group of screenshots in their opinion represented a different screen.
We gave the workers documentation and training prior to the actual
tasks to ensure that they were familiar with our definition of a same
screen. There were a total of 1, 110 tasks (one task per app) with an
average of 32.19 screens in each task.

We divided the set of apps into 10 batches for annotation. After
the workers annotated all the data, our Quality Assurance (QA)
team went over a random 10% subset of the annotations for each
batch and evaluated the annotated groups. They used two metrics
to evaluate the groupings:within-group accuracy and between-group
accuracy. For within-group accuracy, we presented the QA team
with annotated groups and asked to identify if any screenshots were
incorrectly added to a group. For between-group accuracy, the QA
team evaluated if separate groups are in fact representing different
screens. To do so, we presented them with the final annotated
groups of an app and asked if any groups should be merged together.
The QA evaluation for the annotated groups shows that the groups
have high within group accuracy (over 98%) which suggests that
most screens that are grouped together were marked as correctly
representing same screens. However, the QA evaluation for the
between group accuracy is at 34.32%, which suggests that the QA

team would merge the current annotated groups further than the
original annotators.

To create a final set of grouping annotations, we consider two
screenshots to belong to the same group if both annotators put
the pair in the same group. We chose to drop all screenshot pairs
where annotators disagreed from our dataset, because of the low
between-group accuracy observed in the annotations and the high
likelihood that such examples might introduce substantial noise.
The final set of consensus groups has an average of 6.94 groups per
app (standard deviation: 2.63) with an average of 3.09 screenshots
per group (standard deviation: 1.15).

Finally, in order maximize the size of our similarity dataset,
we (1) added all consecutive “same” screenshots to our grouped
screens, and (2) created a dataset containing every combination of
two screens from the annotated groups and labeled them as same
if they belonged to the same group and different otherwise. Going
forward, we refer to this dataset as the screen similarity dataset.

4.2 Screen Similarity: Baseline Methods
Before training our own models, we explored how several existing
methods performed on our dataset. We chose these methods since
they were fully pixel-based and had been used in previous work
to solve problems very close to the similarity problem we wish to
solve here. These methods are also reflective of standard methods
available in the field to gauge similarity between images. Image
hashing is a classic method for testing image similarity, which
has several common implementations. The UI element detection
method builds on recent work in UI object detection [38] and is
based on previous work within our team that is currently used in
a production use case. Finally, TensorFlow Similarity is a state-of-
the-art library for training deep ML models on a variety of image
similarity problems. We also attempted to build a similarity model
building on both recent advances in UI object detection and the
autoencoder-basedmethods initially pioneered by Rico [9], however
we were not successful, possibly due the relatively smaller size of
our dataset compared to those previously used.

Image Hash: We used the Image Hash python library [1] which
is designed to generate similar hashes (fingerprints) for ‘similar’
input even in presence of minor pixel value changes. Specifically,
we used the following hashing methods to determine similarity of
screenshots in the screen groups dataset: Perceptual Hash (P-Hash),
Wavelet Hash (W-Hash), and Difference Hash (D-Hash). We ran all
methods with their default settings.

UI Element Matching: This is a heuristic-based method to
determine screen similarity based on the bounding boxes of UI
elements as detected by UI object detection model. This method was
originally created by our team for use in app crawling applications
and has been used for over a year in our systems, but we have
never formally evaluated it. For this paper, we start by extracting
the UI elements for all screenshots in our screen similarity dataset
using a pre-trained model based on the implementation of Screen
Recognition [38]. To determine whether two screens are similar,
the algorithm examines the detected UI elements from the two
screens, and tries to find matches between the them in terms of
type and bounding box. UI Elements are matched based on their
type (e.g., both are text fields) and bounding box position, and if

451

IUI ’22, March 21–25, 2022, Helsinki, Finland Feiz et al.

almost all of the elements between two screens have good matches,
we declare them the same. Based on manual inspection on a small
set of examples, we set some parameters for our heuristic approach:
we used an IoU threshold of 0.9 to determine bounding box overlap,
and we required all but two UI elements to be matched in order for
two screens to be the same.

Tensorflow Similarity: Tensorflow Similarity is a metric learn-
ing library that is designed specifically to learn models of similarity
between different groups of images [4]. We used this library to train
a model from our app screen dataset that learned a distance func-
tion between two screens, which is used to determine similarity.
We set our model hyperparameters (embedding size of 64) based
on example code and documentation released with the dataset.

Autoencoder-Based Similarity: We attempted to replicate the
Rico autoencoder design used by previous systems [9, 20, 21], but
without relying on view hierarchies as those systems did. In the
place of view hierarchies, we use the UI objects in each screenshot
as detected using the pre-trained model based on Screen Recogni-
tion [38] that was also used in the UI Element Matching baseline
above. We first attempted to train an autoencoder using images
constructed from the detected UI elements with the plan to train an
binary classifier using the resulting pre-trained encoder duplicated
twice as inputs. Unfortunately, we were not able to successfully
train a reliable autoencoder using the Rico design from our dataset,
possibly because of the large linear design of the Rico autoencoder
and our relatively smaller dataset (1, 110 apps in our dataset vs.
around 10, 000 in Rico). We may attempt this method in the future
if we increase the size of our dataset.

The performance of these methods is discussed later in more
depth, however none of these methods were able to achieve an
F1 score greater than 0.7 on our test set split, with the majority
performing much worse. As a result we chose to pursue developing
our own method.

4.3 Screen Similarity: Modeling
Our system for determining screen similarity uses two models:
(1) a UI element detector that extracts and featurizes on-screen
UI elements from a screenshot, and (2) a transformer that jointly
encodes and classifies the relationship between two screens. Our
approach is informed by prior work in UI understanding [34] and
text-based visual question answering [17, 29, 30], both of which
model the relationship between several multi-modal elements.

UI Element Detection: We first use an object detection model
to locate UI elements from a screenshot, which allows our system to
attend to locations of the input image that are most likely to contain
relevant information. We use a Faster-RCNN model [28] which
was pre-trained on a large dataset (~77k annotated screenshots)
of popular iOS app screens [38]. Note that the dataset used to
train the element detection model is completely separate from our
screen similarity dataset. We found that this model worked well
“out of the box” for the screens in our grouping dataset without
any modification or finetuning. We first resized each screenshot to
a fixed size (256x256) and normalized it before feeding it into the
model. We post-processed the model output by filtering out objects
with a low confidence score (less than 0.7) and applied non-max

suppression to remove overlapping detections (IoU greater than
0.2).

For each of the detected UI elements, we extract its (1) position,
(2) predicted label, and (3) a fixed-size feature vector extracted
from the model’s activations (we used the output of the fc6 layer,
following previous work [29]).

Similarity Transformer: To determine the relationship be-
tween two screens (i.e., whether they are the same or different
screens), we extract their UI elements and jointly encode them with
a transformer model. The transformer model uses attention [31] to
contextually encode UI elements and learn relationships between
elements of both screens.

Model Architecture: Our similarity model consists of several
attribute-specific encoders (implemented as linear layers) and a
transformer encoder, see Figure 3. Our model computes several
embeddings for each UI element based on its: (1) position, (2) class
label, (3) RCNN feature vector (encodes visual appearance), and
(4) screen (i.e. which of the screen it belongs to). The model then
combines these embeddings to produce a fixed-size representation
for each UI element. Similar to other transformer-based models, a
“class token” ([CLS]) is inserted, which the model encodes along
with the rest of the input to enable the model to make predictions.
Finally, the model feeds the final embedding of [CLS] into a linear
classifier which predicts if the two input screens are the same screen
or not.

Training Procedure: We trained the Similarity Transformer
model on our screen similarity dataset (Section 4.1). We used our
UI Element detector to pre-compute the detections and features for
each screenshot. Each example consisted of two featurized screens
and a label describing their relationship. We trained our model to
predict the similarity label from the two input screens by minimiz-
ing the binary cross-entropy loss.

Lsim = BCE(ŷsim ,ysim) (1)
where ysim and ŷsim are the similarity label and predicted simi-

larity label respectively. In this equation, BCE refers to the binary
cross entropy loss function (commonly used for multi-label classifi-
cation), which we use to learn the probability that the two screens
are the same.

In addition, we added a secondary “masked prediction objective”
[11, 30] to further improve the performance and generalizability
of our model. During training, a subset of the model’s input is
randomly “masked" with a probability of 15% [11] by replacing its
attribute values with 0. The model is trained to recover the masked
elements using contextual information. Specifically, the model pre-
dicts the (i) position, (ii) class label, and (iii) RCNN features of
masked elements.

Lmasked = MSE(ŷpos ,ypos) + CE(ŷlabel ,ylabel)
+MSE(ŷRCNN ,yRCNN) (2)

MSE is the Mean Square Error, CE is the Cross Entropy. The final
loss function is the sum of the similarity and masked prediction
objectives.

L = Lsim + Lmasked (3)
We trained our model with a learning rate of 5e-5, following

the learning rate suggestion from the original BERT paper [11],

452

Understanding Screen Relationships from Screenshots of Smartphone Applications IUI ’22, March 21–25, 2022, Helsinki, Finland

Figure 3: Similarity Transformer model architecture. We use a transformer model to jointly encode the UI elements of two
screens. UI elements are extracted and featurized from screenshots using a Faster-RCNN model. UI elements are encoded
using several embeddings (vision, position, class, and screen) which captures information from different modalities. A class
token ([CLS]) is prepended to the sequence, which is used to predict the relationship between the two input screens. To im-
prove performance and generalization, we incorporate a masked prediction objective which requires the model to predict the
attributes (e.g., position, class) of a randomly selected subset of elements which have been replaced with 0.

Table 1: Comparison of different similarity detection tech-
niques with the screen similarity test set.

Precision Recall F1

P-hash 0.93 0.14 0.24
W-hash 0.92 0.20 0.33
D-hash 0.95 0.13 0.24
UI Element Matching 0.92 0.17 0.29
Tensorflow Similarity 0.71 0.68 0.69
Similarity Transformer 0.80 0.86 0.83

with a hidden size of 256 which was found by automated search.
Following transformer-style papers the AdamW optimizer was
used. The number of epochs (78) was determined by early stopping,
where training stops when validation F1 score did not improve for
5 epochs.

Our model was able to distinguish same screens with an F1 score
of 0.83 for the screenshot pairs.

4.4 Screen Similarity: Evaluation
We compared our screen similarity model with the baselines de-
scribed earlier. Table 1 shows the results for determining screen
similarity. We split our screen similarity dataset into training (70%),
validation (15%), and test (15%) sets. We partitioned our dataset so
that all screens from any one app appear in the same split. We use
the training split to train all models, including both the Tensorflow
Similarity and Screen Similarity models. We evaluate all methods
with the test set partition of the dataset. Our results show that our
Screen Similarity model outperforms all other baseline methods
with an F1 score of 0.83.

Our results show that the image hash methods and UI Element
matching method all yield high precision (over 0.92) while falling
short on recall (between 0.13 to 0.17). This suggests that these
methods will miss a large portion of same screens. This is likely
because these methods are sensitive to the visual appearance of the
screens, whereas some same screens may have content differences
that substantially change their visual appearance. The Tensorflow
Similarity methods are less sensitive to appearance and utilize deep
neural networks, which could suggest that they would have better
generalization power and be less dependent on the pixel similarity
of the screenshots. The comparison between the Screen Similarity
model and Tensorflow Similarity shows that screen similarity has

453

IUI ’22, March 21–25, 2022, Helsinki, Finland Feiz et al.

Figure 4: Interface for annotating sequences of screenshots.
The annotator identifies if the screenshots are ‘same’ or
‘new’ or ‘other’. For ‘same’ screens, the annotator marks
whether the screen is ‘scrolled’. The annotator marks all di-
alogue opening and closing that is applicable to the pair.

much higher precision and recall increasing the F1 score from 0.69
to 0.86.

The overall comparison of the models shows that the proposed
Screen Similarity method has the highest F1 score of 0.83 over the
screen similarity dataset.

5 SCREEN TRANSITION
In this section, we focus on the relationship between consecutive
screenshots in a user interaction trace which is motivated by ap-
plications such as automated app crawling or automatic replay of
UI actions. In particular, we focus on screen relationship in terms
of “screen transition” in which we introduce the additional sub-
problem of recognizing events such as scrolling, dialogues opening
or closing. This extra information is useful to help guide automation
and crawling algorithms as they interact with an app.

Transition types: We came upon this sub-problem while ex-
amining the data collected from an initial set of user interaction
traces, when we noticed that the app UI sometimes changed in sub-
stantial ways even when the underlying screen did not. We further
examined the dataset, identified events that occurred, and discussed
these events amongst ourselves until we agreed upon a set of 6
types that seemed distinct and common amongst the data that we
examined. We identified 6 types of events: notification, system dia-
log, app dialog, keyboard, bottom dialog, and scrolling (see Figure
1). These events in most cases seem to be independent of screen
similarity, as a dialog box or the keyboard might appear regardless
of whether the app transitions to a new screen or remains on the
same screen. Only the scrolling event requires the app to remain
on the same screen when the event occurs.

In this section, we (1) annotate consecutive sequences of screen-
shots from a user interaction trace, (2) train a model to detect the
transition type between two consecutive screenshots, and (3) eval-
uate our model. We also compare the task of same screen detection
between randomly selected pairs of screenshots versus screenshots
that come from a sequence.

Figure 5: Screen transition dataset annotation totals, includ-
ing opened and closed, for each of the five transition types.
Application dialogues were most common type of transi-
tion in our dataset and notifications were the least common
type of transition in our dataset. The number of Opened and
Closed examples were relatively balanced for each type of
transition. Our dataset contained slightly more examples of
new-screen pairs than same-screen pairs.

5.1 Screen Transition: Annotation
We use the same collection of screenshots described in section 4.1 to
create our screen transition dataset as follows. In this task, our an-
notators annotated the 1,110 sequences of screenshots, where each
sequence captures user interactions within one app. We focused
on two components for annotation of screenshot sequences: (1) if
two consecutive screenshot are the same, and, if so, (2) whether
the screen is scrolled in case the screens are the same, or (3) any
dialog boxes or the keyboard has opened or closed. In the case
of finding the same screen, it is important to know if there has
been any scrolling between the screens since it is critical in terms
of matching items of two screens in many applications. We also
had our annotators label the dialogue transitions because they are
common types of changes between screens and recognizing if a
dialogue has opened or closed can facilitate automatic interactions
with screens in applications, such as closing an errant dialog box.
Figure 1 shows different types of transitions. Note that more than
one transition might happen between two consecutive screenshots.

For each sequence, we consider every pair of consecutive screen-
shots and refer to the screens in each pair as screenbef ore and
screenaf ter to indicate their order. For each pair, the screenaf ter is
marked as either same, new or other in relation to the screenbef ore .
The definitions for same versus new screen is the same as the task
described at section 4.1. The same label indicates that both the
screenshots are showing the same screen although some differ-
ences might exist. The new label is used whenever the screenaf ter
shows a new screen compared to the screenbef ore . The other label
is rarely used in case any of the screenshots are not clearly vis-
ible, such as when taken during animation or before the screen
is properly rendered. In addition, for every pair of same screens,
we had our annotators identify the six common types of transi-
tions, including scrolling and the opening and closing of 5 items:

454

Understanding Screen Relationships from Screenshots of Smartphone Applications IUI ’22, March 21–25, 2022, Helsinki, Finland

system dialogues, notifications, bottom dialogues, keyboards, and
application dialogues.

Figure 4 shows the annotation interface for this task. For this
annotation task we used a web-based interface where annotators
can examine the before and after screens and mark the annota-
tion. Specifically, we required the annotators to choose one of the
same screen, new screen, or other options. In case the annotator
selected same screen, we asked them to mark if there has been any
scrolling between the two screenshots or whether any combination
of dialogue opening and closing had occurred.

We divided the dataset into 20 similar-sized batches and per-
formed the annotation process on each batch. The annotation pro-
cess started with two separate workers annotating each pair of
consecutive screenshots. To monitor the quality of the annotation
labels, our QA team randomly examined 10% of the annotations and
provided a detailed QA report for each of the 20 batches of annota-
tions. For each batch, we shared clarifications regarding common
errors with annotators to reduce error. The average annotation
label accuracy across the batches was 95.33% (std: 0.58 %).

For any screenshot pair with at least one disagreement on their
annotations, our QA team examined the pair and annotated the
correct labels. On average the screenshot pairs with disagreement
were 22.4% with standard deviation of 2.39% across the batches.
Over the dataset, the disagreement rate between the ‘same screen’
and ‘new screen’ was 8%.

The annotators assigned the label ‘other’ to 18 screen pairs,
which we dropped from the dataset. Figure 5 visualizes the distri-
bution of labels in this dataset.

5.2 Screen Transition: Modeling
We initially used our Screen Similarity Transformer to predict
screen transitions by adding a classification head to the [CLS]
token; however, we found that many visual cues for screen transi-
tions (e.g., screen dimming) involved changes that occurred outside
of UI element boundaries. Since our transformer model featurizes
screens as sets of UI elements, it is unable to capture these signals.
Thus, we trained a separate model to predict transitions between
screens from the entire screenshot.

Using our dataset of annotated screen sequences, we trained a
separate machine learning model, which we refer to as the Screen
Transition model, that encodes the entire UI screenshot, instead of
focusing on regions contained by UI elements. Our Screen Tran-
sition model is a siamese network [13] trained to produce an em-
bedding space that reflects both screen similarity and the type of
screen transition. Our network architecture consists of a CNN-
based encoder (ResNet-18 model [15]) followed by a classifier (Fig
6).

We were primarily interested in the Screen Transition model’s
ability to classify transition type; however, we found that incorporat-
ing screen similarity labels during training improved performance.

To train the Screen Transition model, we iterated through our
dataset of annotated screen pairs and computed a “difference vector"
∆h for each pair by subtracting the embedding of the first screen
from the second. We used ∆h to characterize the similarity and
transition relationship between the pair of screens.

A pairwise contrastive loss [13] was used to encourage similar
screens to be close (i.e., within a distancem) in embedding space.

Lsim =

{
| |∆h | |2 if s1 = s2
max(0,m − ||∆h | |2) otherwise

(4)

∆h is also fed into a multi-layered feedforward network which
predicts the presence of transitions. We jointly optimized both
networks by computing a weighted sum of their loss functions.

L = Lsim + λ · BCE(ŷ,y;w) (5)

Because our dataset is imbalanced (i.e., often contains manymore
negative examples than positive examples for each transition type),
we computed a weight vectorw based on the transition frequencies
in the training data.

5.3 Screen Transition: Evaluation
We split our screen transition dataset into training (70%), validation
(15%), and test (15%) sets. We partitioned our dataset so that all
screens from any one app appear in the same split.

We evaluated our transition prediction model on the screen tran-
sition dataset and found that our screen transition model classifies
transitions with an average F1 score of 0.65 across 6 transition
types (a total of 11 classes, since dialogues and keyboards can be
both opened and closed), while our transformer model achieved an
F1 score of 0.46. We also considered a detection transition types
in a reduced format by merging all types of dialogues together
(i.e., app dialogues, bottom dialogues, and system dialogues were
merged into one class). We hypothesized that a smaller number
of classes would be easier for the model to learn, and for some
applications, these types of transitions could be treated similarly,
since they could all be “dismissed." For the reduced set of classes,
our screen transition model achieved an average F1 score of 0.71
across 3 transition types (5 total classes). Table 2 shows the F1 score
for each of the transitions. We also achieved an F1 score of 0.80 for
identifying same screens in our screen transition dataset.

For the screen transition dataset, both screen similarity and
screen transition models can predict whether two consecutive
screens are the same. To compare the two, we evaluated our model
trained on the screen similarity dataset and tested with the the
screen transition dataset to identify same screens. The model per-
formed better than it originally did on the screen similarity dataset
and achieved an F1 score of 0.86 which is higher than how it per-
formed over the screen similarity dataset with F1 score of 0.83. In
addition, we used the same model architecture and re-trained it
(from scratch) on the screen sequence dataset. Because the screen
sequence dataset is much smaller, we used a smaller batch size
(32) and kept other hyperparameters constant. However, the per-
formance dropped significantly, and this model was only able to
reach an F1 score of 0.80. We believe there are two likely causes
for this: (i) the screen sequence dataset is significantly smaller, and
(ii) the screen grouping is “harder" as there is more variation in
the types of screen pairs present. Therefore, our screen similarity
model performs better for detecting similarity between two screens
which is not surprising since the model architecture is designed
around the same purpose, while the screen transition model can
predict the transitions between consecutive screens.

455

IUI ’22, March 21–25, 2022, Helsinki, Finland Feiz et al.

Figure 6: Screen transition model that classifies the transition type between two screens. Two screenshots are featurized using
a CNN-based encoder. The resulting embedding vectors (h1, h2) are subtracted from each other to produce a difference vector
∆h, which is used to predict transition type.

Table 2: Transition prediction performance for our Screen Transition model. For a reduced set of transitions (5), we achieve
an average F1 score of 0.71, and we achieve an average F1 score of 0.65 for all transitions (11).

All Transition Types Open Close Reduced Transition Types Open Close

App Dialogue 0.77 0.65

Dialogues 0.65 0.75Bottom Dialogue 0.65 0.67
System Dialogue 0.58 0.66
Notification 0.64 0.64

Keyboard 0.68 0.58 Keyboard 0.75 0.68

Scroll 0.58 Scroll 0.70

6 DISCUSSION
Our results show that our models outperform existing models on
the screen similarity task. This is not necessarily surprising, as
most of the baseline algorithms (e.g., image and perceptual hashing)
are designed to detect image similarity more generally and are not
trained on user interfaces. We should expect methods trained with
user interface data to do better, as identifying that two screens
are the same may require complex understanding of the semantics
of an interface, such as understanding that different UI content
retains the same layout of a previous screen or that a portion of the
screen has changed position due to scrolling. Still, we see that our
transformer-based method seems to learn these UI details better
than the triplet-loss-trained embedding approach of TensorFlow
Similarity. We hypothesize that our transformer-based model archi-
tecture (Similarity Transformer) is well-suited for our task, since it
jointly encodes both screens (as opposed to independently comput-
ing an embedding for each), allowing it to identify corresponding
elements through attention.

Our results also empirically confirm our intuitive notion that our
two tasks are related, but the screen similarity task is harder than the
screen transition task. This is expected because there are constraints
on how a screen can change within a sequence. For example, a
sequence of scrolling screenshots will likely retain some similar
elements between consecutive screenshots, but in the grouping task
the algorithm is expected to identify that an initial screen is the
same as a screen scrolled several pages down, potentially showing
very different content. We see this in our model training, where
our models trained on the screen similarity task perform even
better on the screen transition task, while performance lags and
degrades in the opposite case of applying a trained transition model
to the similarity task. This suggests different applications of screen
similarity (e.g., “fingerprinting" a UI v.s. processing an interaction
trace) may necessitate adapting the data collection procedures,
model architectures, and training strategies presented in this paper.

There are some limitations to our work. First is our dataset,
which contains only 1,110 apps, many fewer than the millions
reported to be available in the App Store. The apps in our dataset

456

Understanding Screen Relationships from Screenshots of Smartphone Applications IUI ’22, March 21–25, 2022, Helsinki, Finland

also vary in terms of size and crawl length, meaning that the data is
likely unbalanced in various ways. In some cases, an app may have
few screens or few screens are recorded because the crawl worker
was unable to get past the login screen. In other cases, motivated
crawl workers may have found 20 or more unique screens in some
apps. We also know that some transitions, particularly scrolling
and notifications, are relatively uncommon in our dataset.

We also must question how well inexperienced annotators, who
likely had no experience designing or building UIs, were at identify-
ing similar screens. We spent significant effort to train annotators
to identify screens as being similar, or not, according to our appli-
cation’s needs. We found that within-group agreement was high,
suggesting that our annotators understood our instructions and
were quite consistent. At the same time, we saw issues with our QA
team, who wanted to group screens into a smaller number of groups
than the annotators overall. As result, we used a smaller dataset
for training and testing than we might have otherwise, because we
chose to focus on data where all groups agreed. With improved
annotation, and more agreement between the regular annotators
and the QA team, we might expect our results to improve.

To further improve our models, we plan to collect and annotate
additional data. We will also improve our annotation methods,
particularly in QA for screen grouping, to ensure that we get better
quality labels for a larger percentage of our data. With more data
and improved annotation, we believe we can train models with
greater performance.

We envision integrating our models into different applications
such as automated crawling to investigate how they perform on
real-world tasks. The automated crawler can use the screen similar-
ity model to identify whether the current screen is the same as any
previous screen that the crawler has encountered, so it can focus
its efforts on unexplored portions of the app. Another application
of understanding screen relationships is automated testing. For this
type of application, the screen similarity model can be used to ver-
ify if the current screen that is viewed is the same as the recorded
screen. In addition, screen transition model can help identify differ-
ent types of events that might happen during automated testing.
Finally, understanding screen relationships can be integrated into
other applications such as automated UI testing, app understand-
ing, automated playback of previously recorded interactions, and
accessibility evaluation of apps.

7 CONCLUSION
We have examined two problems in this paper: the screen similar-
ity problem requires identifying similar screens from a collection
screenshots from an app, whereas the screen transition problem
requires only identifying the type of transition events that might oc-
cur in an ordered sequence of screenshots from an user interaction
trace. Our models achieve reasonable performance on both tasks,
especially compared to a set of baseline algorithms. We expect in
the future that these models will improve the performance of app
crawlers and app automation systems.

ACKNOWLEDGMENTS
We thank our reviewers for their feedback which helped improve
this paper.

REFERENCES
[1] (accessed)2021. Image Hash Library. Available at https://github.com/

JohannesBuchner/imagehash.
[2] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung

Ta, and Atif M. Memon. 2015. MobiGUITAR: Automated Model-Based Testing of
Mobile Apps. IEEE Software 32, 5 (2015), 53–59. https://doi.org/10.1109/MS.2014.
55

[3] Sara Bunian, Kai Li, Chaima Jemmali, Casper Harteveld, Yun Fu, and Magy Seif
Seif El-Nasr. 2021. VINS: Visual Search for Mobile User Interface Design. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–14.

[4] Elie Bursztein, James Long, Shun Lin, Owen Vallis, and Francois Chollet. 2021.
TensorFlow Similarity: A Usable, High-Performance Metric Learning Library.
Fixme (2021).

[5] Chunyang Chen, Sidong Feng, Zhenchang Xing, Linda Liu, Shengdong Zhao, and
Jinshui Wang. 2019. Gallery dc: Design search and knowledge discovery through
auto-created gui component gallery. Proceedings of the ACM on Human-Computer
Interaction 3, CSCW (2019), 1–22.

[6] Jia Chen, Ge Han, Shanqing Guo, and Wenrui Diao. 2018. FragDroid: Automated
User Interface Interaction with Activity and Fragment Analysis in Android Ap-
plications. In 2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). 398–409. https://doi.org/10.1109/DSN.2018.00049

[7] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and Lihua
Xu. 2019. StoryDroid: Automated Generation of Storyboard for Android Apps.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
596–607. https://doi.org/10.1109/ICSE.2019.00070

[8] Agnese Chiatti, Dolzodmaa Davaasuren, Nilam Ram, Prasenjit Mitra, Byron
Reeves, and Thomas Robinson. 2019. Guess What’s on my Screen? Clustering
Smartphone Screenshots with Active Learning. arXiv preprint arXiv:1901.02701
(2019).

[9] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual
Symposium on User Interface Software and Technology (UIST ’17).

[10] Biplab Deka, ZifengHuang, and Ranjitha Kumar. 2016. ERICA: InteractionMining
Mobile Apps (UIST ’16). Association for Computing Machinery, New York, NY,
USA, 767–776. https://doi.org/10.1145/2984511.2984581

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[12] Andrea Gianazza, Federico Maggi, Aristide Fattori, Lorenzo Cavallaro, and Ste-
fano Zanero. 2014. Puppetdroid: A user-centric ui exerciser for automatic dynamic
analysis of similar android applications. arXiv preprint arXiv:1402.4826 (2014).

[13] Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality reduction
by learning an invariant mapping. In 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), Vol. 2. IEEE, 1735–1742.

[14] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
2014. Puma: Programmable ui-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th annual international conference on Mobile
systems, applications, and services. 204–217.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[16] Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: Using Machine Learning
to Synthesize Robust, Reusable UI Tests. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, New York, NY, USA, 269–282.
https://doi.org/10.1145/3236024.3236055

[17] Ronghang Hu, Amanpreet Singh, Trevor Darrell, and Marcus Rohrbach. 2020.
Iterative answer prediction with pointer-augmented multimodal transformers
for textVQA. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 9992–10002.

[18] Forrest Huang, John F. Canny, and Jeffrey Nichols. 2019. Swire: Sketch-Based User
Interface Retrieval. Association for Computing Machinery, New York, NY, USA,
1–10. https://doi.org/10.1145/3290605.3300334

[19] Zexun Jiang, Ruifeng Kuang, Jiaying Gong, Hao Yin, Yongqiang Lyu, and Xu
Zhang. 2018. What Makes a Great Mobile App? AQuantitative Study Using a New
Mobile Crawler. In 2018 IEEE Symposium on Service-Oriented System Engineering
(SOSE). 222–227. https://doi.org/10.1109/SOSE.2018.00037

[20] Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta. 2020. Enrico: A Dataset for
Topic Modeling of Mobile UI Designs. In 22nd International Conference on Human-
Computer Interaction with Mobile Devices and Services (Oldenburg, Germany)
(MobileHCI ’20). Association for Computing Machinery, New York, NY, USA,
Article 9, 4 pages. https://doi.org/10.1145/3406324.3410710

457

https://github.com/JohannesBuchner/imagehash
https://github.com/JohannesBuchner/imagehash
https://doi.org/10.1109/MS.2014.55
https://doi.org/10.1109/MS.2014.55
https://doi.org/10.1109/DSN.2018.00049
https://doi.org/10.1109/ICSE.2019.00070
https://doi.org/10.1145/2984511.2984581
https://doi.org/10.1145/3236024.3236055
https://doi.org/10.1145/3290605.3300334
https://doi.org/10.1109/SOSE.2018.00037
https://doi.org/10.1145/3406324.3410710

IUI ’22, March 21–25, 2022, Helsinki, Finland Feiz et al.

[21] Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and Brad A Myers. 2021.
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components. Asso-
ciation for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/
3411764.3445049

[22] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. Droidbot: a
lightweight ui-guided test input generator for android. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C). IEEE, 23–
26.

[23] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A
Deep Learning-Based Approach to Automated Black-box Android App Testing. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 1070–1073. https://doi.org/10.1109/ASE.2019.00104

[24] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. 2014. DECAF: Detecting and
characterizing ad fraud in mobile apps. In 11th USENIX symposium on networked
systems design and implementation (NSDI 14). 57–70.

[25] Chien-Hung Liu, Woei-Kae Chen, and Shu-Hang Ho. 2018. NFS: An Algorithm
for Avoiding Restarts to Improve the Efficiency of Crawling Android Applica-
tions. In 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC), Vol. 02. 69–74. https://doi.org/10.1109/COMPSAC.2018.10205

[26] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning Design Semantics for Mobile Apps. In The 31st Annual
ACM Symposium on User Interface Software and Technology (Berlin, Germany)
(UIST ’18). ACM, New York, NY, USA, 569–579. https://doi.org/10.1145/3242587.
3242650

[27] Luka Malisa, Kari Kostiainen, and Srdjan Capkun. 2017. Detecting mobile ap-
plication spoofing attacks by leveraging user visual similarity perception. In
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy. 289–300.

[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. Advances in
neural information processing systems 28 (2015), 91–99.

[29] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv
Batra, Devi Parikh, and Marcus Rohrbach. 2019. Towards vqa models that can
read. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 8317–8326.

[30] Hao Tan and Mohit Bansal. 2019. Lxmert: Learning cross-modality encoder
representations from transformers. arXiv preprint arXiv:1908.07490 (2019).

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information processing systems. 5998–6008.
[32] Junjie Wang, Mingyang Li, Song Wang, Tim Menzies, and Qing Wang. 2019.

Images don’t lie: Duplicate crowdtesting reports detection with screenshot infor-
mation. Information and Software Technology 110 (2019), 139–155.

[33] Wenyu Wang, Wei Yang, Tianyin Xu, and Tao Xie. 2021. Vet: Identifying and
Avoiding UI Exploration Tarpits. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Com-
puting Machinery, New York, NY, USA, 83–94. https://doi.org/10.1145/3468264.
3468554

[34] Jason Wu, Xiaoyi Zhang, Jeffrey Nichols, and Jeffrey P. Bigham. 2021. Screen
Parsing: Towards Reverse Engineering of UI Models from Screenshots. In Pro-
ceedings of the 2021 ACM Symposium on User Interface Software & Technol-
ogy (UIST). Association for Computing Machinery, New York, NY, USA, 1–10.
https://doi.org/10.1145/3472749.3474763

[35] Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah. 2020. Near-duplicate
detection in web app model inference. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 186–197.

[36] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A Grey-Box Approach for Auto-
mated GUI-Model Generation of Mobile Applications. In Fundamental Approaches
to Software Engineering, Vittorio Cortellessa and Dániel Varró (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 250–265.

[37] Shengcheng Yu, Chunrong Fang, Zhenfei Cao, Xu Wang, Tongyu Li, and Zhenyu
Chen. 2021. Prioritize Crowdsourced Test Reports via Deep Screenshot Under-
standing. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 946–956.

[38] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray,
Lisa Yu, Qi Shan, Jeffrey Nichols, Jason Wu, Chris Fleizach, et al. 2021. Screen
Recognition: Creating Accessibility Metadata for Mobile Applications from Pixels.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–15.

[39] Xiaoyi Zhang, Anne Spencer Ross, and James Fogarty. 2018. Robust annotation of
mobile application interfaces in methods for accessibility repair and enhancement.
In Proceedings of the 31st Annual ACM Symposium on User Interface Software and
Technology. 609–621.

[40] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and William
G.J. Halfond. 2019. ReCDroid: Automatically Reproducing Android Application
Crashes from Bug Reports. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). 128–139. https://doi.org/10.1109/ICSE.2019.00030

458

https://doi.org/10.1145/3411764.3445049
https://doi.org/10.1145/3411764.3445049
https://doi.org/10.1109/ASE.2019.00104
https://doi.org/10.1109/COMPSAC.2018.10205
https://doi.org/10.1145/3242587.3242650
https://doi.org/10.1145/3242587.3242650
https://doi.org/10.1145/3468264.3468554
https://doi.org/10.1145/3468264.3468554
https://doi.org/10.1145/3472749.3474763
https://doi.org/10.1109/ICSE.2019.00030

	Abstract
	1 Introduction
	2 Related Work
	2.1 User Interface Testing & Bug Reports
	2.2 UI Understanding

	3 Data Collection
	4 Screen Similarity
	4.1 Screen Similarity: Annotation
	4.2 Screen Similarity: Baseline Methods
	4.3 Screen Similarity: Modeling
	4.4 Screen Similarity: Evaluation

	5 Screen Transition
	5.1 Screen Transition: Annotation
	5.2 Screen Transition: Modeling
	5.3 Screen Transition: Evaluation

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

