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Abstract—Self-explanation is one cognitive strategy through
which developers comprehend error notifications. Self-
explanation, when left solely to developers, can result in a
significant loss of productivity because humans are imperfect
and bounded in their cognitive abilities. We argue that modern
IDEs offer limited visual affordances for aiding developers with
self-explanation, because compilers do not reveal their reasoning
about the causes of errors to the developer.

The contribution of our paper is a foundational set of visual
annotations that aid developers in better comprehending error
messages when compilers expose their internal reasoning. We
demonstrate through a user study of 28 undergraduate Software
Engineering students that our annotations align with the way
in which developers self-explain error notifications. We show
that these annotations allow developers to give significantly
better self-explanations when compared against today’s dominant
visualization paradigm, and that better self-explanations yield
better mental models of notifications.

The results of our work suggest that the diagrammatic
techniques developers use to explain problems can serve as an
effective foundation for how IDEs should visually communicate
to developers.

I. INTRODUCTION

Modern integrated development environments (IDEs), such

as Eclipse, IntelliJ, and Visual Studio, offer a number of visual-

izations to assist developers in more effectively identifying and

comprehending compiler error notifications. For example, in

addition to the full error message text found in a console output

or dedicated error window, such notifications may include

an indicator in one or more margins along with a red wavy

underline visualization overlaid on the source text to indicate

a relevant location of the error.

Many developers consider these error notifications to be

cryptic and confusing [1]. We postulate one of the reasons

error notifications are confusing is because compilers do not

reveal the reasoning used to determine that the error exists.

More explicitly, in order to generate an error notification,

the compiler begins with the source code, collects information

during its compilation, uses that information to identify that

a problem exists, and notifies the developer of the problem

through the IDE. Yet, for developers to comprehend the noti-

fication, they must mentally duplicate this process through self-
explanation [2] in essentially reverse order — starting with the

error notification, the developer must identify what they think

the problem might be from the IDE’s presentation, mentally

collect all of the program components related to this problem,
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Melon.java :7: error:
variable i might not have been initialized
}
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(c) Error message text

Fig. 1: A comparison of a potentially uninitialized variable

compiler error through (a) baseline visualizations, the dom-

inant paradigm as found in IDEs today, (b) our explanatory

visualizations, and (c) the textual error message.

and finally identify the area or areas of source code necessary

to correct the particular defect. This self-explanation process,

when left solely to the developer, can result in a significant loss

of productivity because humans are imperfect and bounded

in knowledge, attention, and expertise [3]. Much of this self-
explanation process may be completely unnecessary since the
reasoning process that resulted in the error notification was
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already known to the compiler.1

Visualizations in IDEs, such as red wavy underlines and

margin indicators, take the perspective that compilers are

opaque black boxes and thus by design are limited in their

affordances for helping developers in comprehending error

notifications. In this paper, we argue that developers stand to

significantly benefit when compilers are made more transpar-
ent and expose their internal reasoning process to visualization

systems. We argue that such systems can leverage these

structures to generate expressive, explanatory visualizations
that align with the way in which developers self-explain error

notifications. Our contributions in this paper are:

• A foundational set of composable visual annotations that

aid developers in better comprehending error messages.

• An explanation task evaluation, using a set of paper

mockups, which demonstrates that our explanatory vi-

sualizations yield more correct self-explanations than the

baseline visualizations used in IDEs today.

• A recall task evaluation, in which developers write

programs in a minimalistic programming environment

to intentionally generate compiler errors, which demon-

strates that better self-explanations enable developers to

construct better mental models of error notifications.

II. MOTIVATING EXAMPLE

Yoonki is an experienced C++ developer who has recently

transitioned to a project that is being developed in the Java

programming language. While programming, he encounters a

wavy red underline visualization as shown in Figure 1a, which

indicates an error. The problem seems to be related to final
int i, which Yoonki recognizes as being roughly similar to

the concept of a const variable in C++. Yoonki investigates

further and notices the full text of the error in the bottom pane

of his IDE (Figure 1c).

However, Yoonki is now a bit puzzled. The error message

indicates the variable might not be initialized at Line 7. He

decides this error message is incorrect and ignores it because

Line 7 contains only a curly brace, which seems to have

nothing to do with his problem. He is comfortable in doing

so because in C++, he often received unhelpful notifications.

Yoonki explains to himself that the problem is that final
variables in Java, like const variables in C++, must be

assigned at their point of declaration, or in a constructor

initializer list. Satisfied with his explanation, he rewrites Line

2 to read final int i = 3; but this immediately results in a

downstream error, as Line 6 now displays cannot assign a
value to final variable i. Yoonki realizes that a constant

cannot be re-assigned, so he deletes the entire conditional

statement. Even though the program now compiles, the fix

happens to be an incorrect one.

The problem here is that Yoonki has learned a reasonable

heuristic for how constant variables work in programming

1As Bret Victor points out his talk “Inventing on Principle” (CUSEC 2012):
“If we’re writing our code on a computer, why are we simulating what a
computer would do in our head? Why doesn’t the computer just do it, and
show us?”

languages, but his heuristic fails in this case. Like C++,

Yoonki is correct in that Java final variables can only be

assigned once. But unlike C++, final variables in Java can

be assigned at a point other than the declaration. Yoonki has

experienced what we could call a knowledge breakdown [3]. In

this case, Yoonki has a confirmation bias about how the system

is supposed to work, and this false hypothesis has worked

reasonably well for him until now.

This false hypothesis remains uncorrected by the IDE. In his

IDE, the red wavy underline visualization can only indicate a

single location related to the error. The IDE is unable to convey

that the problem is dependent on several program elements.

For example, the error text and the indicated location is accu-

rate in that after this line the variable might be uninitialized,

but the IDE does not have an effective way to indicate how

that location relates to the final variable.

In contrast, consider our approach, shown in Figure 1b.

Here, Yoonki may not experience the same knowledge break-

down, because the IDE provides a visual explanation of the

problem within his source code. Though Yoonki might once

again incorrectly assume final variables must be assigned

at declaration, the visualization implies that the problem is

actually related to control flow. Specifically, the explanatory

visualization is showing Yoonki there is a code path in which

i is assigned a value (when b = true), and another code path

where it is not (when b = false). This time, Yoonki correctly

fixes the defect by adding an else statement to the condition,

initializing it with an appropriate value in the case when b =
false.

This hypothetical scenario illustrates why the dominant vi-

sualization paradigm is not sufficient in supporting the process

of self-explanation. As we argue in this paper, this scenario

is illustrative of a more general problem with the output of

program analysis tools: these tools present only the end-result

of the complex reasoning process and therefore do not support

the developer in self-explaining.

III. PILOT STUDY

We conducted a pilot study2 from undergraduate lab ses-

sions in Software Engineering to address a prerequisite re-

search question:

RQ0 What annotations do developers use when they ex-

plain error messages to each other?

We hypothesized that if participants preferred certain types

of annotations when explaining error messages to each other,

they could also benefit when the same annotations were used

to explain error messages to them through their IDE.

Thus, before generating our annotations, we conducted an

informal lab activity with third-year Software Engineering

students. Each student was given a sheet of paper with a source

code listing and the corresponding compiler error message.

The source code listings were unadorned and lacked any visual

annotations.

2All experimental study materials are available at http://go.barik.net/errviz.
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TABLE I: Frequency of Visual Annotations in Pilot

Annotation Frequency Description

Point 49 A particular token or set of tokens has been
marked. Examples include underlining or
circles the token(s).

Text 45 Natural language text. For example, “as-
sign a value to the variable” or “dead
code”.

Association 33 An association between two or more pro-
gram elements, which is accomplished by
drawing a connecting line between the
elements, with or without arrow heads.

Symbol 20 Symbols include visual annotation such as
? or x, or numbered circles, to name a few.

Code 14 Explanatory code that is written in order
to explain the error message, for example,
if (b == false) or m(1.0, 2). This
does not have to be correct Java code, but
should be interpretable as pseudocode.

Strikethrough 5 The strikethrough is separated from the
point annotation because this annotation
is provided by IDEs today, and has pre-
established semantics.

Multicolor - The use of more than a single color to
explain a concept. For example, green may
be used to indicate lines that are okay, and
red to indicate lines that are problematic.
This option was not available to students
in the pilot study.

Students were paired for an explainer-listener exercise. This

is an exercise in which one student, the explainer, is asked

to verbally explain the error message to the other student

while visually annotating the source code listing during their

explanation. Access to external materials was not allowed.

After two minutes of explanation, roles were swapped and

the second explainer annotated the second error message.

We randomly assigned one of four source code listings to

each student, pulled verbatim from the OpenJDK 7 unit tests

for compiler diagnostics framework. These examples, among

others used in subsequent studies, are found in Table III. No

students within a pair received the same source code listings.

In total, we collected 73 samples: 17 from T1 (23%), 12 from

T2 (16%), 20 from T3 (27%), and 24 from T6 (33%). Students

did not receive tasks T4 or T5, because they had not been

created at the time of the pilot study.

From these annotations we performed two passes over the

student responses. In the first pass, we created a taxonomy of

visual annotations based on our observations. In the second

pass, we classified the student responses using this taxonomy.

The aggregated results are shown in Table I.

The pilot study informed our explanatory visualizations,

which we implement through annotations such as points, as-

sociations, symbols and explanatory code. Since students used

these types of annotations without any a priori prompting, we

postulate that they find these types of annotations intuitive to

use during explanation.

TABLE II: Visual Annotation Legend

Symbol Description

code The starting location of the error.

code Indicates issues related to the error.

Arrows can be followed. They indicate the next relevant
location to check.

1

Enumerations are used to number items of potential interest,
especially when the information doesn’t fit within the source
code.

? The compiler expected an associated item, but cannot find it.

Conflict between items.

code Explanatory code or code generated internally by the com-
piler. The code is not in the original source.

Indicates code coverage. Green lines indicate successfully
executed code. Red lines indicate failed or skipped lines.

IV. EXPLANATORY VISUALIZATIONS OF ERROR

MESSAGES

We propose a set of eight visual annotations, which are

summarized in Table II. We now concretely describe these

annotations using the motivational example from Figure 1b.

The starting point for visual explanation in the source code list-

ing is indicated using code (a green rectangle with rounded

corners that surrounds a program element). In our visualization

mockups, we choose the starting point to be the same as the

source of the error identified by IntelliJ (Figure 1a). In the

example, this is final int i.

Continuing our example, the starting point is associated with

a second point, int i, because this is where the potential

assignment to the variable occurs. We indicate the starting

point with code (red rectangle with rounded corners), and

the association is indicated by (a directional arrow).

A second association leads the developer to an explanatory

code block that contains a copy of the statement. Explanatory

code is represented by code (dashed gray rectangle), which

indicates the surrounded elements are explanatory and not part

of the original source code of the program. This explanatory

code block is part of a larger composite annotation describing

the control flow scenario under which the statement is exe-

cuted.

This composite annotation demonstrates that several basic

annotations can be combined to create a new annotation for

expressing a more complex concept. One of these components

is the code coverage annotation. This annotation uses

(green line) and (red line) to indicate whether or not a line

is covered. In addition, the enumerations 1 and 2 provide the

developer with convenient labels for referring to the branches

(for example, “It looks like it works fine in branch 1, but

not in branch 2”). The final component is another explanatory
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code block indicating one possible condition under which the

branch would be executed.

Thus, the composite annotation indicates that i = 3, and all

statements within branch 1 will be executed when b = true.

This composite annotation is then used to show the developer a

counterexample in which i would be uninitialized. A simple

text explanation stating that i is uninitialized when b
= false would have provided the same conclusion, but we

hypothesize that the intermediate steps in the explanation are

important for developer comprehension.

There are two visual annotations that do not appear in the

motivating example that warrant explanation. These are (red

cross), which indicates that a conflict exists between blocks,

such as when the developer accidentally specifies repeated

modifiers:

class Apple {

public public String toString () {
return "Red";

}
}

public public

Finally, the ? is used to indicate that the program element

should be associated with another element, but that the con-

necting element is not found. This can occur when a catch
statement is unreachable either because the exception can

never be thrown, or because it is always caught by a prior

catch clause:

catch(IOException ex) { }IOException

?

V. METHODOLOGY

We conducted a second, formal study, which we discuss for

the remainder of this paper.

A. Research Questions

We assigned participants randomly to two groups: a control

group, having access to the baseline visualization (red wavy

underline) in their source code, and a treatment group, having

access to our explanatory visualizations. We designed our

experiment to elicit answers for four research questions:

RQ1 Do explanatory visualizations result in more correct

self-explanations by developers?

RQ2 Do developers adopt conventions from our visual

annotations in their own self-explanations?

RQ3 What aspects differentiate explanatory visualizations

from baseline visualizations?

RQ4 Do better self-explanations enable developers to con-

struct better mental models of error notifications?

Unlike the baseline visualization, explanatory visualizations

are intended to expose the reasoning process of the compiler.

For RQ1, we hypothesized that exposing this reasoning

process would result in significantly more correct explanations

by developers. If this hypothesis was not supported, it would

imply that the explanatory visualizations might confuse devel-

opers and differ from the way they model error messages.

For RQ2, we hypothesized that both the control group and

treatment group would adopt similar annotations when devel-

opers explained error messages, because our visualizations are

based on conventions that developers would find intuitive for

self-explanation.

For RQ3, we wanted to identify the traits of the explanatory

visualizations beneficial to developers in comprehending error

notifications. Significant differences in traits between the base-

line visualization and explanatory visualizations would give us

insight into the design of explanatory visualizations in general.

For RQ4, we hypothesized that better explanations result

in better mental models, and that developers with explanatory

visualizations would tend to have better mental models than

the control group.

B. Participants

We recruited 28 participants (n = 28) from a third-year

undergraduate course in Software Engineering because they

were readily available and because we wanted to reserve our

more limited industry participants for a full implementation.

We offered participants extra credit on their final exam for par-

ticipating in the study. Participants self-reported demographic

data. 23 of the participants were male (82%), and five of

the participants were female (18%). The mean age of the

participants was 22 (s = 3.6). Participants reported a mean

of 9 months (s = 12) of industry programmer experience.

26 participants reported using the Eclipse IDE as their

primary Java programming environment; two participants re-

ported IntelliJ. On a 4-point Likert-type item scale of Novice—
Expert, 13 participants reported their overall programming

ability as Intermediate (46%), 14 as Advanced (50%), and 1

as Expert (4%). No participants ranked themselves as Novice.

On a 4-point scale Not knowledgeable—Very knowledgeable,

19 participants indicated they were knowledgeable about Java

(68%), and the remaining 9 participants indicated they were

very knowledgeable about Java (32%).

C. Selection Criteria for Mockups

Because our university requires students to have knowledge

of Java, we selected examples in this language to mockup our

visualizations.

Pragmatically, we wanted to keep the entire study under

an hour, so we could only present six novel visualizations to

participants. We admit that the selection of these visualizations

was not random, and offer our justification for this decision

here.

We selected our compiler error examples from the OpenJDK

diagnostics framework.3 This framework contains a collection

of 382 Java code examples, each of which is designed to

generate one or more error messages when compiled.

3The framework contains a sample source code listing for almost ev-
ery compiler error within Java. The source files may be downloaded
at http://hg.openjdk.java.net/jdk7/tl/langtools/, and then by browsing to
test/tools/javac/diags/examples/.
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TABLE III: Participant Explanation and Recall Tasks

Task Order Task Name OpenJDK File Error Message

T1 Melon VarMightNotHaveBeenInitialized.java variable i might not have been initialized

T2 Kite UnreportedExceptionDefaultConstructor.java unreported exception Exception in default constructor

T3 Brick RefAmbiguous.java reference to m is ambiguous, both method m(int,double) in
Brick and method m(double,int) in Brick match

T4 Zebra InferredDoNotConformToBounds.java cannot infer type arguments for BlackStripe<>;
reason: inferred type does not conform to declared
bound(s)

inferred: String
bound(s): Number

T5 Apple RepeatedModifier.java repeated modifier

T6 Trumpet UnreachableCatch1.java unreachable catch clause
thrown types FileNotFoundException,EOFException have
already been caught

Since some error messages may be more conceptually so-

phisticated than others (for example, “illegal escape character”

is not particularly suited to an explanatory visualization), we

hand-selected a set of examples that we believed could benefit

most from visual annotations. If no significant results could

be identified even from this hand-selected set, then it would

suggest that this visualization system is not worth pursuing for

a full implementation.

Furthermore, our visualization system is not intended to

teach new concepts; rather, it is intended to aid the developer in

understanding how a particular instance of an error message

applies to a specific source file. Consequently, we selected

examples based on concepts that students were expected to

already know from their coursework, such as constants and

variables, exceptions, and classes.

Ultimately, we selected messages that we believed could

effectively demonstrate the rich explanatory potential of visu-

alizations, while considering the capability of the participants.

The selected messages are summarized in Table III.

D. Mockup Construction Procedure

Using the six selected error messages, we constructed a total

of 12 mockups — six for the control group and six for the

treatment group. We designed the paper mockups to resemble

how the visualization would appear within the text editor of

the IDE, with one mockup per page. Each page contained a

listing of the source code with the appropriate visualizations

and line numbers. The code listing was followed by the text

of the compiler error message.

The control group mockups were designed by directly

copying the red wavy underline visualizations provided by the

IntelliJ IDE for the Java code examples. IntelliJ also provides

interactive tooltips for each error, which are shown when the

developer hovers over an annotated substring. However, we did

not consider these interactive features since we are specifically

interested in the contribution of the explanatory capability of

the non-interactive visualizations. We chose IntelliJ over the

Eclipse IDE because it uses the same text error messages as

the command-line OpenJDK compiler, which is important to

our experimental design.

The treatment group mockups were informed by a pilot

study through which we elicited an initial taxonomy of visual

annotations that appeared to be useful to developers when they

explained concepts to other developers (see Section III). We

used the annotations from this pilot experiment as a founda-

tion for manually drawing visual annotations for six of the

error messages. We used our own experiences with compiler

technologies such as Roslyn4 to render visualizations that we

think are plausible for compilers to render if they expose the

appropriate data structures to a visualization system.

E. Investigator Training

The first and second authors conducted the experiments.

To increase consistency between the authors, the first author

conducted a practice session with the second author acting

as a participant. The roles were then reversed, and the study

was repeated. Through this process, we developed a formal

protocol script for conducting the sessions.

F. Experimental Procedure

1) Assignment: We randomly assigned participants to one

of two groups — control or treatment, such that each group

had an equal number of participants. This resulted in 14 partic-

ipants per group. The only difference between the treatment

and control groups was the type of visualizations that they

used during the experiment.

2) Recording: Participants filled out an informed consent

form and indicated whether or not they wanted their audio

(used in Phase 1 and 2) and screens (used in Phase 2) to be

recorded. For participants who agreed to be recorded (n = 26),

4http://msdn.microsoft.com/en-us/library/roslyn.aspx
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we used desktop recorder software to record both the audio

of the explanations as well as screen interactions during the

experiment.

3) Phase 1: Self-Explanation Phase: The purpose of this

phase was to evaluate whether our explanatory visualizations

resulted in more correct self-explanations by developers than

with baseline visualizations (RQ1), and to identify the extent

to which developers adopt conventions from our visual anno-

tations in their own explanations (RQ2).

We sequentially provided participants with six error notifi-

cations, presented as paper mockups that resembled an IDE.

For the mockup, the source code of the OpenJDK file was

minimally modified using a random-noun generator to make

the class and method names more pronounceable. These tasks

are summarized in Table III, and we presented the tasks to the

participants alphabetically by Task Name.

In the control group, participants received paper mockups.

containing the baseline red wavy underline visualization, such

as in Figure 1a. The treatment group received paper mockups

containing our explanatory visualization as in Figure 1b.

Below the source code listing, all participants received the

full error message text (Figure 1c). In the treatment group,

we provided participants with a visual annotation legend

(Table II), since these participants did not have prior familiarity

with our visualizations. Finally, we provided participants with

colored pencils and an unadorned mockup of the IDE having

the source code and error message text, but no annotations.

For each task, we provided participants with 30 seconds to

individually examine the paper mockup. Then, we instructed

participants to think-aloud and verbally explain the cause

of the error. During their self-explanation, we encouraged

participants to visually annotate the unadorned mockup. We

gave participants two minutes for the think-aloud explanation,

but allowed them to finish earlier if they were satisfied with

their explanation for the task. The investigators were not

allowed to correct the participants when they gave incorrect

explanations, nor give any hints about the error notification.

However, we permitted the investigators to ask clarifying

questions (e.g., “Could you explain that in more detail?” or

“I didn’t hear you. Could you repeat that?”). At the end of

each explanation, participants indicated whether or not they

had previously encountered this error message, which they

categorized as Yes, No, or Unsure.

4) Cognitive Dimensions Survey: To evaluate the aspects of

visualizations that developers find useful in self-explanation

(RQ3), participants completed a Cognitive Dimensions of

Notations questionnaire (CD) [4], which we simplified for

error message notifications. We chose this evaluation instru-

ment over other usability instruments because the analysis is

usable by non-specialists in HCI (in contrast with Nielson and

Molich’s heuristic evaluation [5]). The instrument is also quick

to apply, and can be used in an early design phase.

The full CD defines 14 dimensions, but not all of these

are applicable to our design. Since our visualizations are

currently non-interactive, we eliminated all dimensions that

assessed interactivity or were otherwise immaterial to our

(a) Command prompt.

(b) Minimal text editor.

Fig. 2: We presented participants with a command prompt in

which they had the compile command available to them. The

limited interaction modality forces participants to rely solely

on their own memory to successfully complete the task.

study, among them, viscosity, premature commitment, and

progressive evaluation. This left four dimensions:

Consistency
similar semantics are expressed in similar syntactic

forms

Hidden dependencies
important links between entities are not visible

Hard mental operations
high demand on cognitive resources

Role expressiveness
the purpose of a component is readily inferred

A description of each dimension was presented to the

participants, along with a 5-point interval scale indicating the

degree to which their visualizations satisfied the dimension,

which we worded so that higher scores are better. We gave

participants 5 minutes to complete the questionnaire.

5) Break: We gave participants a 5 minute break between

the first and second phases. We did this partly because of the

long duration of the study, but also to minimize short-term

memory interference between the two parts of the experiment.

6) Phase 2: Recall Phase: The purpose of this phase was to

determine whether better self-explanations enable developers

to construct better mental models of error notifications (RQ4).

To evaluate this hypothesis, we asked participants to write

source code listings on a computer from scratch in order to

generate a provided compiler error.

Participants did so through the interface shown in Figure 2.

We gave the participants a command prompt (Figure 2a) sup-

porting a single command, compile. This command printed to

the console the expected error for the task, as well as the error
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that their source file produced. In addition, participants entered

their source code into a minimal text editor (Figure 2b). We

chose a minimal text editor to force all participants to recall

code entirely from memory, without assistive features like

auto-completion. For example, in Figure 2, the participant has

been asked to write a source listing that generates the error

variable i might not have been initialized. However,

the source listing as currently written compiles without error.

Participants used this interface to complete a total of six

tasks, all of which they had previously explained during the

Self-Explanation Phase of the experiment. The tasks from this

phase are also from Table III, but to avoid serial recall we

presented the tasks in Task Order, rather than alphabetically

by Task Name. Thus, participants had to successfully recall
their explanations from the Self-Explanation Phase of the

experiment and apply their understanding to this phase of the

experiment. We allowed participants an unlimited number of

compilation attempts, but restricted the time for each task to

5 minutes. Participants moved on to the next task either when

they had successfully replicated the error message, which we

term recall correctness, or when their time had expired.

The unusual experimental technique in this phase is not

without theoretical justification. In 1977, Shneiderman con-

ducted an experiment in which he used memorization/recall

tasks as a basis for judging programmer comprehension [6].

Specifically, one component of his experiment involved non-

programmers and programmers memorizing a proper FORTRAN
program printed on paper through a line printer. He also

printed a second program with shuffled lines. He found that

non-programmers had similar performance in recall with both

the proper and shuffled versions of the program, but that pro-

grammers had significantly better recall on the proper version

of the program. Through the development of his cognitive

syntantic/semantic model, he suggests that “performance on

a recall task would be a good measure of program compre-

hension” because such a task cannot be accomplished by rote

memorization, and instead requires “recognizing meaningful

program structures enabling them to recode the syntax of the

program into a higher level internal semantic structure” [6].

Thus, participants had to construct a correct mental model

of the error notification through self-explanation in order to

successfully complete the task in this phase of the experiment.

VI. RESULTS

A. RQ1: Visualizations Lead to More Correct Explanations

Our hypothesis was that having visual explanations for

compiler notifications would result in more correct self-

explanations by participants. To validate this hypothesis, we

conducted an inter-rater reliability exercise in which the first

and second authors independently rated the participants’ ex-

planations, without consideration of group. The first author

assigned ratings using both the recorded verbal explanations of

the participant as well as their paper markings. The second au-

thor assigned ratings using only the paper markings. This was

a deliberate design decision to ascertain the extent to which
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Fig. 3: Explanation rating by group. The treatment group

(T) provided significantly higher rated explanations than the

control group (C).

visual markings alone can be used to infer the correctness of

an explanation.

We assigned ratings to each of the 168 tasks on a Likert-

type scale from 1–4, labeled Fail, Poor, Good, and Excellent,

respectively. For each task, we developed a rubric for what

constituted a correct explanation and noted common miscon-

ceptions. Cohen’s Kappa (squared weights), found moderate

agreement between the raters (n = 168, κ = 0.58, 95%

CI: [0.46, 0.68]). Furthermore, a paired Wilcoxon Signed-Rank

Test did not identify the differences between the two raters

as being significant (n1 = n2 = 168, S = 200, p = .21),

Thus, the data suggest that visual annotations capture the

correctness of the full explanation adequately. No attempts

were made to reconcile disagreement. In subsequent analysis,

we use the explanation ratings from the rater using both verbal

and written explanations. Because this rater had access to more

information from which to assign a rating, these ratings are

likely to be more accurate than ratings assigned from written

markings alone.

The distribution between the two groups, binned by rating,

is shown in Figure 3. Between the control and treatment

groups, a Wilcoxon Rank-Sum Test confirms that participants

gave significantly better explanations in the treatment group

(n1 = n2 = 84, Z = 2.23, p = .026). A potential confound

is that participants are simply providing better explanations

in the treatment group because more of them had previously

encountered the error messages, but a Pearson Chi-squared

Test did not identify a significant difference between the

groups (n = 168, df = 2, χ2 = 3.37, p = .19).

B. RQ2: Availability of Explanatory Visual Annotations Pro-
motes More Frequent Use of Annotations During Self-
Explanation

Our hypothesis was that both the control group and treat-

ment group would adopt similar annotations when developers
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Fig. 4: Annotations by group, filled with usage across tasks.

The distribution of annotations used by the control (C) and

treatment groups (T) were not identified as being significantly

different, but the treatment group used annotations signifi-

cantly more often.

TABLE IV: Number of Features by Task and Group

Number of Features

Control Treatment

Task Median Dist Median Dist

T1 2 3
T2 2 2
T3 2 2
T4 2 3
T5 1 2
T6 3 3

explained error messages, if these annotations were grounded

in conventions that developers found intuitive.

Consider for a moment the visualizations drawn by two

participants in our study, shown in Figure 5. In Figure 5a,

the control group participant receives a score of Fail, because

he incorrectly self-explains that the problem must be due to

not initializing the variable at its point of declaration. He then

either ignores the conditional statement in which the constant

value is re-assigned, or fails to notice that the variable is

declared as final. In Figure 5b, the participant, aided by

the explanatory visualization, correctly self-explains that the

problem is actually in the conditional statement, and provides

explanatory code to demonstrate a case in which the variable

remains uninitialized. In addition, the treatment participant

uses more annotations, such as colors, points, and associations,

in his explanation than the control group participant.

Table IV summarizes the number of annotation types used

for each task, partitioned into control and treatment groups.

Using a Wilcoxon Rank-Sum Test, we find that the treatment

group used significantly more visual annotation types in their

explanations than the control group (n1 = n2 = 84, Z = 2.15 ,

p = .032).

One concern is that participants in the treatment group

used these annotations simply because they were readily

available, not because they were useful to their explanations.

Figure 4 shows the distribution of the annotations by group.

The bars are filled with the usage of that annotation by task to

(a) (b)

Fig. 5: A contrast between visual explanations offered by

(a) control group participant with explanation rating of Fail,

and (b) treatment group participant with explanation rating of

Excellent.

TABLE V: Cognitive Dimensions Questionnaire Responses

Control Treatment

Dimension Median Dist Median Dist p

Hidden Dependencies* 3 4 .008
Consistency 4 4 .979
Hard Mental Operations 3 2.5 .821
Role Expressiveness 4 4 .130

indicate how a particular annotation is distributed among the

tasks. A Pearson Chi-squared Test was unable to identify any

significant differences in the distribution of these annotation

types between groups (n = 389, χ2 = 4.20, df = 5,

p = .65), suggesting that these annotations are intuitive even

without priming the participants. Although Figure 4 shows

that the control group used the point annotation more than the

treatment group, this difference was not found to be significant

(n = 168, df = 1, χ2 = 1.53, p = .22).

In addition, none of the participants in the treatment group

used our invented code coverage annotation, nor did this

annotation appear directly in our pilot study. This suggests

that participants are using these annotations only when they

find them to be useful in self-explanation.

Thus, participants in both groups used and applied the

annotations found in our explanatory visualizations, despite

the fact that we did not expose the control group to our visual-

izations. This indicates that these annotations are intuitive and

useful for participants. Moreover, the presence of explanatory

visualizations promotes their usage during self-explanation by

participants.
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Fig. 6: Task by explanation rating. Each of the six tasks

are broken by explanation rating (1 = Fail, 2 = Poor, 3 =

Good, 4 = Excellent) from the first phase of the experiment.

For each explanation rating, the frequency of correct and

incorrect recall tasks from the second phase of the experiment

is indicated by filling in the bars. Higher rated explanations

lead to significantly better recall correctness.

C. RQ3: Explanatory Visualizations Reveal Hidden Depen-
dencies

We wanted to know which factors participants considered

to be significant improvements over the baseline visualization.

We had no explicit hypothesis for this research question.

Table V summarizes the results from our Cognitive Dimen-

sions questionnaire. Median results for the hidden dimensions

for control and treatment groups were 3 and 4, respectively.

The distribution of responses in the two groups were signif-

icantly different (n1 = n2 = 14, Z = −2.64, p = .008).

The result suggests that our explanatory visualizations reveal

more of the hidden dependencies, that is, the internal reasoning

process of the compiler, than the baseline visualizations.

We were unable to identify any statistically significant dif-

ferences from the remaining dimensions in the questionnaire.

D. RQ4: Higher Rated Explanations Lead to Better Mental
Models, and Better Recall Correctness

Figure 6 illustrates the explanation rating for each task, the

frequency of the explanation for each rating within the task,

and the recall correctness. Remember from Section VI-A that

the treatment group had higher explanation ratings than the

control group. Our expectation was that these higher rated

explanations would translate to better correctness scores during

the recall phase of the experiment.

A Kruskal-Wallis Test revealed a significant difference

between performance on explanation correctness and perfor-

mance on recall correctness (χ2 = 29.39, df = 3, p < .001),

and the mean ranks indicate that recall correctness generally

increases with explanation correctness (u1 = 51.8, u2 = 69.8,

u3 = 69.3, u4 = 102.8). This confirms that explanation is

valuable for improving correctness in the recall task, but two

potentially problematic issues arise.

In Figure 6, we observe that task T5 (repeated modifier)

has both perfect recall correctness and uniformly excellent

explanation rating, which we postulate is attributable to this

being trivial problem. Our first concern is that this task is

artificially inflating the influence of the explanation correctness

to recall correctness. As a contradictory example, we visually

identify that T4 (cannot infer type arguments) has some

participants who have poor performance during recall despite

excellent explanation correctness. We found that even without

T5, the difference is still significant (χ2 = 12.33, df = 3,

p = 0.006), and the general trend remains (u1 = 49.0,

u2 = 64.0, u3 = 63.6, u4 = 84.0).

However, a second issue remains — if the treatment group

gives higher rated explanations, then we would expect that

they have greater correctness in recall. Unfortunately, we were

unable to identify this as being significant (n1 = n2 = 84,

Z = 1.09, p = 0.27).

We conclude that better explanations yield improved recall

correctness, though with some reservations.

VII. THREATS TO VALIDITY

In real code bases, developers have to explain error mes-

sages in functional code intertwined with erroneous code, and

across multiple source files. Our tasks contained only the code

directly pertinent to generating the error, and within a single

source file. We don’t yet know if explanatory visualizations

will be equally beneficial or scale to more realistic contexts.

We applied a set of visualizations to only six hand-selected

tasks that could fit on a single screen. As such, it remains to be

seen whether visual annotations can be effectively applied to

the broader set of error messages, including those in languages

other than Java. Thus, we cannot and do not claim that these

annotations are comprehensive.

We think there exists a construct validity problem in that

explanation ratings were significantly better in the treatment

group, but this performance did not translate to better recall

correctness. We postulate that this situation occurred because

it was possible for developers to successfully explain the task,

yet still have gaps in their mental model that prevent them from

successfully completing the task. In addition, we observed that

some participants had significant difficulties with syntax, and

in some cases even introduced secondary compiler errors not

related to the recall task during the process.

Furthermore, the act of performing a think-aloud can en-

hance self-explanation, and in turn, the construction of mental

models for notifications. This process was necessary in order

to evaluate participant explanations, but in doing so, we may

have unintentionally enhanced the performance of the control

group in their recall tasks. Another issue is that participants

were already familiar with the baseline visualizations, but

had no prior experience or any training with our explanatory

visualizations. This may explain why we found no statistical

difference in hard mental operations: the potential cognitive

benefit of our visual annotations was counterbalanced by the

difficulty of understanding an unfamiliar visualization.
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VIII. RELATED WORK

Self-explanation. Lim and colleagues demonstrate that ex-

plaining why a system behaves a certain way results in better

understanding and stronger feelings of trust [7]. We were

also inspired by the work of Ainsworth and Th Loizou, who

showed that the use of diagrams promote the self-explanation

effect significantly more than text [8].

Improving error notification comprehension. Jeffrey created

a tool called Merr that overrides the error handler of the LR

parser generator of a compiler to automatically provide more

useful syntax error messages [9], and Kantorowitz and Laor

likewise propose modifications to the parser generator [10].

While these tools apply to text error messages, they illustrate

that tools can improve error messages when they can interact

with compiler internals. However, even detailed messages do

not necessarily improve understanding, which suggests that al-

ternative representations of error notifications may sometimes

be more appropriate [11], [12].

Hartmann and colleagues introduce a social recommenda-

tion system that presents examples of how other developers

understand and correct errors [13]. In contrast, our approach

argues that the compiler can offer its own reasoning process

to aid developer comprehension. Other approaches attempt to

provide better diagnostics or reduce false positives in compiler

errors [14], [15], [16]. We expect that our visualizations can

leverage such improvements in compiler technology.

IX. FUTURE WORK

We suggest several potential research directions. One di-

rection is the feasibility challenge of developing algorithms

and techniques for recording compiler analysis traces so they

can be exposed to visualization systems. We know compilers

generate a significant amount of information during the com-

pilation process, but it remains an open question as to what

information is pertinent to aiding developer comprehension,

and how to represent this information in a way usable by

visualization systems. One approach to demonstrate this feasi-

bility may be to modify an implementation such as MiniJava,

a useful but restricted subset of the Java language [17].

An empirical direction is to determine the extent to which

visualizations can be applied to notifications, given that some

annotations appear to be more suitable than others. A system-

atic investigation into categorizing these notifications, such as

through taxonomy construction, may offer researchers insights

into this design space.

X. CONCLUSION

Our work in this paper demonstrates the potential for

facilitating developer self-explanations when opaque com-

piler reasoning processes are made available for visualization.

Through error notifications, we demonstrated that when such

visualizations align with developer expectations, developers

better comprehend error notifications, use these visualizations

more often in their own self-explanations, and construct

better mental models of error notifications. We think the

diagrammatic techniques developers use to explain problems

to other developers and to themselves can serve as an effective

foundation for how IDEs should visually communicate to

developers.
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