
Improving Error Notification Comprehension in
IDEs by Supporting Developer Self-Explanations

Titus Barik∗†
∗ABB Corporate Research, Raleigh, North Carolina, USA

†North Carolina State University, Raleigh, North Carolina, USA
titus.barik@us.abb.com

Abstract—Despite the advanced static analysis techniques
available to compilers, error notifications as presented by modern
IDEs remain perplexing for developers to resolve. My thesis
postulates that tools fail to adequately support self-explanation, a
core metacognitive process necessary to comprehend notifications.
The contribution of my work will bridge the gap between the
presentation of tools and interpretation by developers by enabling
IDEs to present the information they compute in a way that
supports developer self-explanation.

I. INTRODUCTION

Modern software development typically occurs within an
integrated development environment (IDE), such as Eclipse or
Visual Studio. One task within the IDE is error notification
comprehension. During this task, the IDE presents the developer
with one or more notifications as text messages in a list box,
with visual indicators such as a

::
red

:::::
wavy

::::::::
underline, that indicate

the “primary” location of the error.

Unfortunately, analysis techniques are hampered by the lim-
ited visual annotations provided by IDEs [1], [2]. For example,
the Roslyn1 compiler internally computes rich diagnostics, such
as static data flow analysis, but this high fidelity information
is silently dropped as the information is narrowly funneled
textually through the notification presentation engine. Although
compilers have significantly more information to share about a
diagnostic, much of this information appears to be discarded
because visualizations in the IDE are not rich enough to fully
express what the diagnostic wants to communicate.

Consequently, notifications remain perplexing for developers
to resolve. For example, nearly 30% of Java builds at Google
fail due to a compiler error, and the median resolution time
for each error is 12 minutes [3]. For novice developers, that is,
students using Java in the BlueJ IDE, the situation is worse —
through telemetry of over 37 million compilation events, we
find that nearly 48% of all compilations fail [4].

The goal of my research is to identify and address the
difficulties developers face during these error comprehension
tasks. In my thesis, I posit two hypotheses to address these
challenges. First, I hypothesize that the current mechanism by
which tools present information to the developer is misaligned
with how developers need to interpret this information. More
precisely, I experimentally provide evidence that tools fail to ad-
equately support the metacognitive process of self-explanation.
Second, I argue that much of the effort involved during self-
explanation is clerical, and that this work is already computed

1https://github.com/dotnet/roslyn

Eclipse
File Edit View Window Help

Error List Output

Duplicate method next() in EntrySetMapIterator<K, V>:
 next() at line 74
 next() at line 162

EntrySetMapIterator.java

162 public K next() {
163 last = iterator.next();
164 canRemove = true;
165 return last.getKey();
166 }

EntrySetMapIterator.java
74 public K next() {
75 last = iterator.next();
76 canRemove = true;
77 return last.getKey();
78 }

next()

next() Undo Ctrl+Z

 Redo Ctrl+Y

 ...

 Compare: No Differences

1

2

3

4

Fig. 1. An explanatory interface mockup for notifications, implemented within
Eclipse. This example illustrates a duplicate method error, in which the next
method has been inadvertently defined twice within the same scope. In (1)
and (2), the interface uses a fragment-oriented editor to display both methods
adjacently. (3) The interface adds visual annotations to make the conflicting
relation explicit, using an internal schema that enhances self-explanation [1].
(4) Through the same schema, the interface infers that the developer will
likely want to compare these fragments. In this case, the interface speculatively
executes a comparison tool and determines that there are no differences.

by the compiler in order to generate a diagnostic in the first
place. The contribution of my work will bridge this gap, by
enabling IDEs to present the information they compute in a
way that supports the self-explanation process that developers
already perform (Figure 1).

II. SELF-EXPLANATION AS AN UNDERLYING THEORY FOR
COMPREHENSION FAILURE IN NOTIFICATIONS

In one of the more accessible definitions offered by
Legare, self-explanation is a process by which we “attempt to
understand a causal relation by identifying relevant functional
or mechanistic information [5].” In the context of code, a tool
that supports self-explanation must make explicit the relations
between program elements (that is, the mechanistic information,
or what), and provide one or more techniques to help the
developer reason and make informed decisions about why
specification of the source code is a problem (that is, the
functional information, or why).

I analyzed the notification corpora of several compilers,
such as Java, C# and TypeScript, for explicit relations. A
message has a relation if it requires two or more program
elements to construct the message. Across all compilers, roughly
25% of messages have explicit relations. Triangulating, I

public E next() {

last = iterator.next();

canRemove = true;

return last.getKey();

last = iterator.next();

canRemove = true;

return last.getKey();

}

Fig. 2. In Eclipse, a developer attempts to identify whether the logic of two
duplicate methods are identical. To do so, the developer manually places the
code for the two methods together and highlights the second instance. The red
circles represent fixations, and indicates the developer is performing a manual
difference of the source code text.

found that the most costly error messages (as defined by their
respective authors) are almost always relational [3], [4]. More
surprising is that the kind of relational errors, such as types and
dependencies, substantially overlap between both novices and
experts, suggesting that such errors are difficult, independent of
developer experience. Thus, failures in higher-level cognitive
processes above knowledge recall, such as self-explanation, are
a plausible hypothesis to investigate.

III. EVALUATION PLAN

Phase I (Completed): How should IDEs visually com-
municate with developers? To understand how current IDEs
fail to support developer self-explanations, I conducted a user
study with 28 undergraduate Software Engineering students
[1]. I asked participants in this paper-and-pencil study to
think-aloud and explicitly self-explain compiler errors, while
making diagrammatic markings on top of the corresponding
code. Through a modified Cognitive Dimensions Framework
survey [6], participants identified that current visualizations
fail to show important relations between program elements.
Importantly, the diagrams that participants drew to explain
their own understanding of error notifications, which I intend to
adopt in Phase III, differed significantly from those of existing
IDEs.

Phase II: What difficulties do developers encounter in
modern IDEs? (In Progress) To further understand developer
difficulties with notifications, I conducted an eye tracking
study in which participants from undergraduate and graduate
Software Engineering courses used the Eclipse IDE to resolve
the most frequent Java compiler errors as reported by Seo and
colleagues [3]. An initial analysis suggests that on average,
developers spend less than 5% of their time for a task on
the error message content; instead, they spend a significant
amount of effort on collecting relevant information, arranging
that information to make sense of it, and attempting to assess
the impact of their intended change. Our preliminary results
suggest that IDEs are not adequately providing developers the
appropriate mechanistic and functional information needed to
efficiently comprehend an error notification.

For example, consider the participant in Figure 2, who needs
to determine which of the two next methods in a duplicate
method error he wants to keep. To easily compare the two
methods, he manually copies and pastes the logic of one method
and places it adjacent to the other, highlighting one of them to
differentiate it from the other. Then, he visually scans the code
to conclude that the methods are identical, and realizes that

either can be removed to resolve the defect. This is a clerical
and time consuming process.

Phase III: How should tools incorporate self-
explanation principles? (Not Started)

Consider the duplicate method error once again, but
through an alternative explanatory interface (Figure 1). Unlike
before, the interface brings together the two methods, through
the use of a fragment-oriented editor [7]. Visual annotations,
such as arrows, make the relationship explicit between methods.
The compiler, having appropriate semantic information, can
speculatively determine that there is no difference between the
methods. Thus, we expect that this interface better supports
the developer during self-explanation.

I intend to build a software artifact to evaluate the effective-
ness of such an interface. An open challenge is to develop a
computational approach that can automatically aid the developer.
One possible avenue is to adapt techniques by Erwig and
Walkingshaw, who describe a textual notation for specifying
the semantics of an explanation-producing program, coupled
with a visual notation for presenting the explanation [8].

IV. CONCLUSION

My thesis postulates that failures in self-explanation result
in failures in error notification comprehension. The results of
this work will advance our understanding of how developers
comprehend notifications and provide specific guidelines to
tool designers for notification tasks.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1217700. I thank Dr.
Margaret Burnett and Dr. Scott Fleming for their extensive
feedback. I also thank my advisor, Dr. Emerson Murphy-Hill,
for his insights and support.

REFERENCES

[1] T. Barik, K. Lubick, S. Christie, and E. Murphy-Hill, “How developers
visualize compiler messages: A foundational approach to notification
construction,” in VISSOFT ’14, Sep. 2014, pp. 87–96.

[2] T. Barik, “Improving error notification comprehension through visual
overlays in IDEs,” in VL/HCC GC ’14, Jul. 2014, pp. 177–178.

[3] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge,
“Programmers’ build errors: A case study (at Google),” in ICSE ’14, May
2014, pp. 724–734.

[4] A. Altadmri and N. C. Brown, “37 million compilations: Investigating
novice programming mistakes in large-scale student data,” in SIGCSE

’15, Feb. 2015, pp. 522–527.
[5] C. H. Legare, “The contributions of explanation and exploration to

children’s scientific reasoning,” Child Development Perspectives, vol. 8,
no. 2, pp. 101–106, Jun. 2014.

[6] T. Green and M. Petre, “Usability analysis of visual programming
environments: A Cognitive Dimensions framework,” Journal of Visual
Languages & Computing, vol. 7, no. 2, pp. 131–174, 1996.

[7] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, “Code Bubbles: A working
set-based interface for code understanding and maintenance,” in CHI ’10,
Apr. 2010, pp. 2503–2512.

[8] M. Erwig and E. Walkingshaw, “A visual language for explaining
probabilistic reasoning,” Journal of Visual Languages & Computing,
vol. 24, no. 2, pp. 88–109, Apr. 2013.

