
A Case Study of Software Security Red Teams
at Microsoft

Justin Smith∗

Lafayette College
smithjus@lafayette.edu

Christopher Theisen
Microsoft

christopher.theisen@microsoft.com

Titus Barik
Microsoft

titus.barik@microsoft.com

Abstract—The modern software security adversary employs
persistent and evasive attack techniques, for example—using zero-
day exploits that have not been disclosed publicly—to target
high-profile companies for political and economic espionage or to
exfiltrate sensitive data or intellectual property. To combat these
threats, large organizations are adopting an emerging practice
of staffing full-time offensive security teams, or red teams. To
understand the workflows, culture, and day-to-day practices of
software security engineers in red teams, we conducted 17 inter-
views with informants across five red teams within Microsoft. We
found that software security engineers have substantial impact
in the organization as they harden security practices, drawing
from their diverse backgrounds. Software security engineers are
both agile yet specialized in their activities, and closely emulate
malicious adversaries—subject to some reasonable constraints.
Although software security engineers are in some respects soft-
ware engineers, they also have several consequential differences
in how they write, maintain, and distribute software. The results
of this work are applicable to practitioners, researchers, and
toolsmiths who wish to understand how offensive security teams
operate, situate, and collaborate with partner teams in their
organization.

I. INTRODUCTION

As humans, we’ve let security fall by the wayside. Now
it’s all catching up. Our organization hires people like
me to try and find these issues, with the mindset of an
attacker—somebody who is malicious—before
somebody in the wild does.

Cliff, Cloud Computing (Red Team)

Sophisticated adversaries attack high-profile companies for
purposes of political and economic espionage or to exfiltrate
sensitive data or intellectual property [1, 2, 3]. To defend
against these adversaries, companies have traditionally adopted
various practices, such as deploying software security tools [4],
using firewalls to protect the perimeter, or adopting bug bounty
programs. However, these defensive models of organizational
security are inadequate against modern threats. Software
security tools detect threats that are already-known—but
sophisticated adversaries find and exploit 0-day vulnerabilities
that have not been disclosed publicly [5, 6]. Shared, cloud-based
infrastructure introduces substantial challenges to perimeter-
based security models, blurring the boundaries between insider
and outsider threats [7]. Bug bounty programs crowdsource

*Author conducted this work while a visiting researcher at Microsoft.

software security and compensate external security researchers
for reporting exploits; although these programs are beneficial,
exploit discovery is front-loaded to newly released software and
services, and primarily focuses on probing popular targets [8, 9].
In contrast, sophisticated adversaries—such as nation-states—
employ long-term campaigns with specific objectives over
repeated attempts [1].

An emerging and unconventional approach adopted within
large software companies, like Amazon, Dropbox, Facebook,
and Microsoft, is to embed full-time offensive security engi-
neering teams—or red teams—that realistically emulate sophis-
ticated adversaries to compromise, infiltrate, and control the
organizations’ production software and systems. To investigate
the workflows, culture, and practices of software security
engineers within red teams in modern software organizations,
we applied a human-centered, “software studies” lens [10] by
eliciting first-hand accounts from professional software security
engineers at Microsoft, through semi-structured interviews with
17 informants. We used thematic analysis to identify patterns
and themes important to these red teamers.

Our case study found that software security engineers have
substantial impact in the organization as they harden security
practices, drawing from their diverse backgrounds. Software
security engineers are both agile yet specialized in their
activities, and closely emulate malicious adversaries—subject to
some reasonable constraints. Our informants felt that security
culture was a crucial aspect to effective red teaming, and
emphasized how their role has at times been inadequately
supported by being conflated with software engineers. Although
software security engineers are in some respects software
engineers, they also have several significant differences, such as
the security mindset. Our findings are applicable to practitioners,
researchers, and toolsmiths who wish to understand how
offensive security teams operate, situate, and collaborate with
partner teams in their organization.

II. METHODOLOGY

Research context. We conducted the study at Microsoft in
Redmond, Washington. Microsoft is a multinational technology
company, with a recent focus on cloud computing.

Recruitment. Prior research has found that security prac-
titioners are hesitant to divulge practices to perceived out-
siders [11]. To recruit informants for our study, we used
a combination of random sampling and snowball sampling.
We initially randomly sampled informants from our company978-1-7281-6901-9/20/$31.00 c©2020 IEEE



address book by searching for full-time engineers with the title
of “Software Security Engineer,” having at least three years
of experience within the company. Next, we used snowball
sampling [12] because this non-probabilistic approach is
particularly effective at reaching hard-to-reach groups [13, 14].
At the end of each interview, we asked the current informant
to connect us with individuals who engaged in very different
activities from themselves. Informants were compensated for
their time with meal vouchers.

To reduce interviewer bias and obtain data from different
perspectives during the interviews, each interview was con-
ducted by two researchers. It is important to note that not
all topics were discussed at the same level of detail with all
informants, due to the nature of semi-structured interviews.

Informants. We continued interviewing informants until
obtaining theoretical saturation, that is, the point at which we
were obtaining interchangeable stories. This occurred at 17
informants, across five primary software security teams with
offensive security engagements (Table I). Informants had a
mean experience of µ = 5 years at Microsoft, and a mean ex-
perience of µ = 8 years total for security-related engagements.
To maintain anonymity, we refer to these informants using
pseudonyms. Fifteen of our informants identified as male and
two (Clara and Pam) identified as female. A typical security
team consists of 3–10 full-time software security engineers
and engineering leads.

Interview protocol. We conducted semi-structured inter-
views1 that focused on the informants’ recent experiences,
responsibilities, workflow, collaboration, challenges, motiva-
tions, tools, processes, and learning. Using guidelines from
Hove and Anda [15], we conducted interviews in pairs, with
one interviewer taking the lead while the other takes notes
and asks additional questions. We interviewed informants in
their own offices, where they often showed us relevant artifacts,
such as reports that they had prepared for development teams,
custom tools they had built, and their security environment as
configured for day-to-day work. We recorded and transcribed
all interviews; interviews typically lasted just under an hour.
We obtained informed consent using Microsoft’s IRB protocol.

Analysis. We used the thematic analysis procedure described
by Braun and Clarke [16], which in summary consists of six
phases: 1) familiarizing yourself with your data, 2) generating
initial codes, 3) searching for themes, 4) reviewing themes,
5) defining and naming and themes, and 6) producing the
report. After transcribing the interviews, we used the ATLAS.ti
data analysis software for qualitatively coding the data. We
performed coding over multiple iterations to search for, review,
define, and name themes. The results of this analysis are found
in Section III.

Validity. We used several methods to mitigate against
common validity threats in qualitative research [17], namely:
contextual inquiry, disconfirming evidence, prolonged engage-
ments, and thick description. Section IV describes details of
these methods alongside the corresponding threats to validity.

1Interview script available at https://aka.ms/redteams-casestudy.

TABLE I
INFORMANTS

Experience (Yrs)2

Informant1 Security Role Organization Total

Cloud Computing Group (n = 3)

P1: Chase† Cloud Applications 6 10
P2: Cliff Cloud Services 3 7
P3: Clara† Cloud Services 2 12

Databases Group (n = 2)

P4: Bill† Applications 5 10
P5: Brian Networks 3 6

Devices and Gaming Group (n = 6)

P6: Dan† Browser 4 18
P7: David Browser 8 8
P8: Dean† Cloud Services 3 12
P9: Derek† Operating Systems 6 7
P10: Gary† Threat Protection 5 5
P11: George† Threat Protection 5 5

Enterprise Group (n = 2)

P12: Eric† Enterprise Ecosystem 4 8
P13: Evan† Enterprise Ecosystem 3 5

Productivity Software Group (n = 4)

P14: Pam Build Systems 5 5
P15: Pat† Client Applications 8 8
P16: Paul Client Applications 4 4
P17: Peter† Compliance and Auditing 14 14
1 All informants have the title Software Security Engineer. Informants

marked with † are Senior-level or higher within the organization.
2 Years of software security experience within the current organization

and total experience across all professional security engagements.

III. FINDINGS

We identified three top-level themes relating to workflow,
security culture, and differences between software engineering
and software security engineering. Because the interviews were
semi-structured, we covered themes depending on the direction
of the conversation. Table II summarizes those themes.

Through our analysis, we found that software security
engineers conduct long-term campaigns to exploit specific goals
and targets, that team members have unique specializations
that they apply to their tactics, and that their work is context-
sensitive and requires on-demand tools. Red teams collaborate
with partner teams and communicate vulnerabilities to them
(Section III-A). Informants were diverse in their backgrounds
and told us about their motivations for becoming a software
security engineer. We found that red teams closely emulate
the activities of malicious adversaries, but differ in their
ethical responsibility to prevent harm to the organization
(Section III-B). Informants also reported that while software
engineers and software security engineers often use the same
tools, there are substantial differences in how they make impact
in their organization (Section III-C).



TABLE II
SUMMARY OF INFORMANT THEMES

THEME SUMMARY REPRESENTATIVE EXAMPLES PARTICIPANTS

Workflow
(Section III-A)

Red teams undertake campaigns with goals and targets defined
a priori. Software security engineers must both develop
specializations and maintain the ability to pivot quickly to
new contexts. Red teams aren’t just responsible for reporting
the vulnerabilities they find during campaigns; they must also
motivate and enable developers to fix them.

“Every product is unique.”
“We serve as sparring partners for blue teams.”
“The vulnerabilities we find skew toward the
expertise of people on our team.”
“[We] follow up with the [devs] to make sure
they actually fix [vulnerabilities].”

P1, P2, P3, P5, P6,
P7, P8, P9, P10, P11,
P12, P13, P14, P15,
P16, P17

Security
Culture
(Section III-B)

Software security engineers come from diverse backgrounds,
with varying motivations. Red teams are most effective when
they realistically emulate a malicious adversary. Red teams
take seriously the ethical responsibilities of white hat hacking,
and apply their skills to improve security.

“It’s a diverse group. We don’t look like your
typical hacker.”
“Rules of Engagement document[s] state what
we can and can’t do.”
“Once we’ve proven the point that it could
be done, we don’t actually have to push the
detonator button.”

P1, P2, P3, P4, P5,
P6, P7, P8, P9, P10,
P11, P12, P13, P14,
P16

Software vs.
Security
(Section III-C)

Although software security engineers conduct software devel-
opment activities, they have several consequential differences
in how they write, maintain, and distribute software. Software
security engineers have unique specializations such that they
should not be evaluated directly as software engineers.

“Both are development in one way or another.”
“It’s the difference between seeing something as
a tool versus a weapon.”
“The main difference is having the right mindset
for security, having an adversary’s mindset.”

P1, P2, P3, P4, P5,
P6, P7, P9, P12, P13,
P14, P15, P16

A. Workflow

We describe the structure of red team security campaigns
with partner teams (Section III-A1), the tactics used to execute
these campaigns (Section III-A2), and how red teams communi-
cate their results to developers in partner teams (Section III-A3).

1) Campaigns: A typical campaign. Informants’ workflows
comprise a series of campaigns. Here we characterize a typical
campaign to provide a framework for understanding software
security engineers’ activities. Dean describes a recent red team
campaign that more-or-less mirrors an offensive kill chain—
kill chains describe the different phases of an intrusion [18].
The campaign begins with “customer engagement and scoping,
and ends with reporting. End-to-end, it’s normally six to eight
weeks. Everything else in between is testing, and it’s usually
based on the environment.”

As Dean explains, campaigns begin with scoping, which
includes “buy-in,” “meeting with the customer,” “deciding the
target,” obtaining “permission to own their stuff and to go
attack their things,” and following legal protocol, or “getting
legal cover so no one comes and yells at me.” Scoping takes
about a week. The next stage is initial access, or “cracking
the perimeter”; it is “the longest portion of the assessment
because we have to find a flaw to get inside the perimeter.”
This activity usually involves “a little bit of reverse engineering,
using virtual machines, and using the source code to figure out
what is what.” Dean adds, “there’s something called ‘assume
breach’ where for this campaign we assume one adversary
already has credentials within the network. And the reason
why that exists is because it’s true.” The next two weeks are
lateral movement, essentially, “moving around the network to
get to wherever we need to go.” The final step is command
and control where the red teamer installs a remote access
tool in order to establish a persistent, interactive channel for

exfiltration of data or other intellectual property. At this point,
Dean notes, “I am you as far as everything else in the network
is concerned.”

Every campaign is different. Other campaigns are more
open-ended. As Clara (and Cliff) observe, software security
red teams are an emerging role, and “all the teams seem to
have different styles of operations: sometimes they go fast and
they aren’t expected to maintain persistence, and sometimes
they do the full shebang.” Cliff adds, “in some of these cases,
it’s months or years. They’re ‘low and slow,’ absolutely, but
I’d be scared of what that person was able to do.”

A campaign’s scope is also “very variable and could be
anything” (Eric). For example, sometimes the campaign is
exploit hunting, “which essentially ends when we have enough
bugs to make a chain of exploits that are required to do whatever
we want” (Eric). This type of campaign ends with a mitigation
proposal to the software engineers. Other campaigns, as Paul
describes, “try and figure out where to go by things that either
have had very little or a lot of public interest lately. In the
middle I don’t care so much. When there is a lot of public
interest you feel like it’s likely that someone external is going
to discover something pretty critical.” But regardless of the
type of campaign, they always have a specific objective, “no
matter how you get that to happen” (Chase).

2) Tactics: “It’s challenging to put structure onto this
high-flying, edge-of-your-seat, break-stuff-however-you-can,
everything-is-different sort of thing. Boy, it’s tough” (Cliff).

Software security engineers are agile in their abilities, but
also specialized, chaining together a sequence of conventional
and domain-specific tactics to execute red team activities. Much
of the work is exploratory, requiring creativity and insight, and
sometimes a bit of luck. As Paul says, “there are definitely
some anxiety-inducing aspects. I think that’s just the nature of



anything exploratory. You have no idea if there is anything to
find.” Evan comments, “that’s just the job. You are looking for
something that might not exist.” Cliff adds, “you have to be
willing to pivot really fast.”

Specializations within red teams. Red teams assemble
individual software security engineers with specialized skills,
allowing team members to offer “different perspectives” (Dan)
and make the team more effective overall. They specialize
by software domain, such as “desktop applications, browsers,
networks, kernels, or virtualization. There are a lot of options”
(Derek). Security engineers primarily focus on “where they’re
more interested in, such as network security, infrastructure,
or deployment. We divide our responsibilities” (Brian). Pat
notes, “there’s also quite a lot of specialized knowledge
around different types of vulnerabilities: the sorts of mistakes
developers make, or potential problems in processes, for
instance.”

But specialization has its disadvantages, particularly if a
team’s composition becomes unbalanced: “the vulnerabilities
we find are skewed towards the expertise of the people on our
team, based on our past experience, and not necessarily how
our customers are getting owned in the wild” (Pam). If security
engineers overspecialize, it means they are less likely to have
a “broader view or understanding of all of the modules and
what the modules are responsible for” (Paul).

Context-sensitive work and on-demand tools. The context-
sensitive nature of their work often necessitates that software
security engineers create on-demand tools, “because every
product is unique” (Chase). As a result, a lot of our tooling
is developed on our own (Dean, Pam, Pat, Brian, Bill). Using
off-the-shelf security tools to identify vulnerabilities is often
ineffective, because “it’s really low-hanging fruit and rarely
yields much. Developers are already using those to filter out
most of those bad behaviors” (Dan, Evan). Dan adds that they
do use fuzzing tools, which are developed internally: “We write
our own. They are constantly changing.” Though some red
teams report using playbooks (Dean)—collections of reusable
procedures—others like Bill argue that the “situations are much
too custom or unique to provide blanket tactics.” Instead, Cliff
argues, “you build stuff for single purposes, especially when
you’re writing offensive tools. It’s more about making it work.”

3) Collaboration: Team rotations. Red teams rotate
amongst different engagements, depending on organizational
priorities (Dean, Evan, Peter, Eric), and collaborate with project
managers and software engineers in the partner teams.

Communicating vulnerabilities. Finding vulnerabilities, as
Pam says, isn’t just “throwing vulnerabilities over the fence: it’s
following up with the team to make sure that they actually fix
them.” To support developers, Cliff says, “there’s a science to
explaining things to software engineers and project managers.”
Bug reports filed against developers “start with an introduction
about the problem, explain step-by-step what is going on and
why it’s bug” (David); “it’s not just explaining, but giving some
suggestions on how to fix the issue and that’s an important part
of what you’re communicating back to them” (Clara). Dean

explains, “we only file bugs if we can prove an exploit. Even
if it’s super small.”

Not all vulnerabilities require detailed reports. Developers are
generally responsive to fixing issues when the organization has
a strong security culture: “it’s usually in people’s best interest to
fix it” (Cliff). For example, says Pat, “some vulnerabilities, like
XSS, are more well-known than others. But other vulnerabilities
are more complex and less well-known. Eventually you have
to work through questions people have and just get them
on the same page as you, building up a foundation of tribal
knowledge.”

Developer push back. Occasionally, developers push back
on the red team’s recommendations because they don’t recog-
nize the security implications, or because they must “balance
their time between shipping features and fixing bugs” (Chase).
There are sometimes challenges in “getting developers to
resolve or even triage their bugs” (Peter). In these situations,
Paul explains that he will occasionally develop proof-of-
concepts or more elaborate “weaponized exploits” when “the
developer doesn’t believe that this is a serious thing. You can
prove it is by actually weaponizing it.” As Chase says, “but at
the end of the day it’s not about being unhackable, it’s about
how hard it is to get hacked.”

Engaging with blue teams. Red teams “serve as sparring
partners for blue teams” (Dean). The blue teams are “the
incident response teams, who run attack investigations in the
event of a potential threat, evict the hacker, and basically
drive the service back to normal operations” (Chase). Many of
the blue team activities rely on “machine learning, analytics,
and combining telemetry obtained from host-based, network,
service, and application monitoring” (Gary). When red teams
discover an exploit, “they hand it over to the blue team for
them to signature” (George). These signatures allow the blue
teams to identify if the same threat appears from an outside
adversary in the future.

B. Security Culture

We describe the security culture of red teams, which includes
how security engineers become interested in software security
(Section III-B1) and the set of shared attitudes, values, and
goals that characterize this role (Section III-B2).

1) Backstory: Breaking stereotypes. Do all hackers wear
hoodies? “There are definitely stereotypes. Everybody thinks
it’s just like this high school hacker in his black hoodie in
his mom’s basement. And you look around and it’s a diverse
group. We don’t look like your typical hacker. I don’t look
like your typical hacker. I think people think of hackers always
as a bad person. It’s not necessarily bad. They’re not doing
things maliciously to hurt somebody else, they’re doing it to
make it better” (Clara). Cliff reflects on malicious hacking:
“I wouldn’t say it’s worth it. The black mark is not worth it.
That’s why I’m white hat in the first place.”

Motivations. Software security engineers arrived at their
positions via a variety of interests or hobbies, such as “pirating
games” and “hacking on video games” (Bill, Derek), “writing
emulators” (Eric), and “hacking on game consoles in my



free time, which led to studying more about crypto, memory
corruption issues, how to exploit them, and how they work”
(David). Brian adds, “games are where you start. For example,
with games, you try to understand how the thing works and
then you start to do some small hacking. From there, you start
learning about security. I started doing some practical stuff
before college.”

Others were introduced to security more formally. For
example, Paul “started doing capture-the-flags at University.
I’ve always been interested in security before I started formally
studying computer science. I took a couple of courses in
security. They were very practical—exploitation based. Very
offensive security-based. I met up with some like-minded
people there.” Cliff also attributes his success to formal
education, adding, “that’s funny, without school I probably
wouldn’t have been in security: we wrote worms, we did cross-
site scripting and buffer overflows—stuff that is dated, but
this is how it all works. I had never thought about making a
program do something that I totally didn’t intend for it to do
as a developer. I thought, this is really cool.”

From motivations to careers. Our informants’ motivations
and interests from casual hacking ultimately developed into
careers in security. Before joining the organization as a red
teamer, some previously worked in national security, military,
or the defense industry (Dean, Cliff, Clara). Others, including
Brian and Bill, worked previously in security consulting firms
as external penetration testers. Two informants came from
a prior software engineering role, such as software testing
(Pam, Chase), where “through testing, they found security bugs
in products” (Chase). Practices, such as creating “playbooks”
(Dean) and using “reverse engineering tools” (David), from
these prior experiences were brought into their current red
team activities.

Clara observes that, despite these divergent backstories, “the
security industry is a pretty tight-knit group,” sharing their
knowledge and experiences through “conferences,” “meetups,”
and “slack-chat.” “It’s a small world. We chose security because
we truly care about it and we want to do something good,”
Clara says: “I feel security is the way I can leave an imprint
and leave the world a better place.”

2) Realism and Ethics: Emulating the adversary. “We
usually set goals at the beginning of our red team campaigns
because we want them to be more like real life,” says Chase.
Software security engineers are obligated to accurately model
malicious actors, yet stop short of actually causing harm, such
as data loss. For example, “if the goal is just to own a host,
that’s what we’ll do. If the goal is to emulate a persistent
threat, we’ll install a remote access tool to maintain access”
(Chase). When using a black box approach that models an
outside attacker, “you can say with some kind of certainty
that the attacker would be more likely to find what we found,
because we followed the same kind of steps. We can say [to
our engineers] that you should fix these versus other kinds of
bugs because they might be found sooner” (Bill).

Practical shortcuts. Nevertheless, there are also practical
constraints that malicious adversaries don’t have. In particular,

“it’s usually true that an attacker has no deadline. They don’t
have the same boundaries that we have” (Brian). “Because
of time constraints, our activities are loud, and they’re more
detectable, which means you’re going to get caught more
quickly than a sophisticated attacker might. When you’re going
against real-life attackers you need every advantage you get
that’s reasonable” (Cliff).

Consequently, red teams employ principled shortcuts, or
“gray boxing” (Dean). Cliff explains, “the biggest advantage I
get is inside network access. As an employee of Microsoft, I
get to see whatever is available on the corporate network and
I have insider knowledge, both shared by other red teams and
from presentations, meetings, and talking to the people who
actually wrote the code. That way every project doesn’t turn
into a 6-month endeavor.”

Cliff continues, “of course, the more shortcuts you take, the
weaker your argument will be. But if you think the corporate
network is a boundary, we are already at a problem.” This
might seem like an unrealistic assumption, but as Pam notes,
“there have been some high-profile incidents at other companies
where attackers have gotten into the network somehow. We
don’t want to be the next one.”

Ethics. Software security engineers both acknowledge and
take seriously the ethical responsibility of white hat hacking,
voluntarily choosing to give up certain expectations of privacy.
Red teams have a “Rules of Engagement document that states
what we can and can’t do. We’ve had that spelled out for us
so we don’t get into trouble” (Clara). Dean adds that these
rules “require them to undergo additional background checks.
There are additional security controls in place and they tell
you this before coming on board. If you are going to do this
kind of work, you need to be okay with no privacy.” Thus, the
latitude granted to software security engineers also leads to
more scrutiny: for instance, the activities of software security
engineers are subject to heightened logging and monitoring.

In contrast to malicious actors, red teams emulating “root
and loot” (Chase) scenarios are “not going to touch customer
data” (Cliff). Instead, “they’ll explore what the solutions might
be to protect that data” (Cliff). Clara notes, “sometimes we’ll
work the service owner and we’ll show them how we can get
into an exploit situation. Once we’ve proven the point that it
could be done, we don’t actually have to push the detonator
button and blow up something.”

C. Software Engineering vs. Security Software Engineering

We describe the similarities and differences between software
engineers and software security engineers in red teams. We com-
pare how the impact of their work is measured (Section III-C1)
and discuss a defining characteristic of red teams, the security
mindset (Section III-C2).

1) Organizational Impact: Similarities. On the surface,
software engineering and software security engineering, as
Cliff says, are “both development in one way or another.”
Brian explains, “you need to have a background as a software
engineer to understand what is involved in doing security
processes and assessments.” Paul adds, “even as a software



security engineer, I do some software engineering, especially
around improving [security features in client applications]” and
Pam explains that both roles “still need to know how to dive
deep into things and poke around.”

Differences. But when looking more closely at the two roles,
there are substantial differences between software security
engineers and engineers. Derek explains, “in security software
development, you might write tools that have an offensive
purpose but it’s usually a quick script and you hack it together.
You really don’t have the same practices, formality, foundation,
and stability to build on [as in software engineering]. As a
software engineer, you have to have good coding standards,
and stick to specific timelines. If something is delayed, the
product won’t ship, and that attracts attention.”

In contrast, tools developed by software security red teams
“aren’t shared broadly, because mostly these tools start as a
collection of scripts. You don’t really care if you run the
software and it crashes on you. The tool works well for our
team, but not for everyone else. Since the kinds of tools that
we write can be dangerous, we try to limit the audience of
who can access those tools” (Brian).

Making an impact. As a result of these differences, it can
be tricky to measure impact if software security engineers are
evaluated directly against software engineers. For instance, for
software engineers “you could measure how many check-ins
developers do or how many features they developed. But if you
are a software security engineer reviewing a very secure piece
of software, you might not produce anything. Sometimes when
we don’t find any vulnerabilities, we explain what we tried to
do—how we tested this feature in this particular way or tried to
reach this network. Across the industry, it’s difficult to measure
our output if you don’t know the person who is doing the job”
(Brian). Paul explains two other approaches to quantifying
impact. First, one way is to “find critical vulnerabilities that
would have been serious if discovered externally.” The second
approach is to “take a deep dive into a feature—you may not
necessarily find any critical bugs, but you instead make a bunch
of recommendations to actively improve the security.”

Although software security engineers “probably aren’t doing
a lot of development—especially on features or products that
you’d give to other people—I’d say the security moniker gives
you room to make impact in other ways” (Eric). Bill concludes
that “it’s incorrect for me to call myself a software engineer
when I haven’t specialized in software engineering. These need
to be distinct roles.”

2) Security Mindset: Defining the mindset. Security is a
mindset and it’s a way of thinking about the world that is
necessary for effective security engineering [19]. But, as Pat
explains, “I wouldn’t say there’s any one process. There’s
several different ones, and it depends on what I’m trying
to achieve.” For instance, Pat sometimes thinks about the
security mindset as “recognizing how something can be used
maliciously or broken” and that “it tends to be a blind spot
among many people.” Pat explains, “it’s the difference between
seeing something as a tool versus a weapon I suppose. There

is a mantra among some people in the security space that
everything is broken.”

Recognizing risk. Another aspect of the security mindset
“is recognizing when someone is using something that they
don’t understand. The average developer has no understanding
of how dangerous [API] is. A lot of things out there are very
dangerous to do, but are not advertised as such. People don’t
have any awareness of the risk they’re undertaking by using
[API]. Keeping aware of that sort of risk is part of being a
software security engineer” (Pat). Chase clarifies, “what that
means is that there are always ways to break into or exploit
software. So to be successful you need to have an exploitation
mindset, having a broad understanding of the world and looking
at possible vectors.” As David points out, “when you are a
software security engineer, the question you always have in
mind is, what if? I’m not saying developers write bad code,
because when you develop something your goal is to make it
work. You don’t think about the possible edge cases.”

Thinking like an adversary. One way of thinking about
possible vectors is by “having the willingness and motivation
just to keep looking for new things. Just because something
isn’t an issue today, doesn’t mean it’s not going to be further
down the line. Some security engineers are so ingenious with
all the things they do it surprises me. I wouldn’t have thought
to do it but it’s really cool how they thought to poke a hole in
something” (Clara).

When comparing the mindset between software security
engineers and software engineers, Paul explains that “the main
difference is having the right mindset for security—having an
adversary’s mindset—and always thinking about how things
are going to break instead of how things are going to perform
correctly.” Pat reflects, “there’s a way of thinking and looking at
things that’s important for it that not everyone quite manages.”

IV. THREATS TO VALIDITY

Using Maxwell [17], we discuss three practical dimensions
of validity that routinely arise in qualitative research: descriptive
validity, interpretive validity, and generalizability.

Descriptive validity. Informants may have misremembered
or unintentionally distorted their accounts. We adopted a
contextual inquiry approach from Lutters and Seaman [20], and
asked informants to provide specific accounts of recent experi-
ences to mitigate against tendencies to generalize. We asked
multiple informants about the same theme and searched for
disconfirming evidence where statements from one informant
would contradict the statements from another. We also had
prolonged engagements over a period of six months, during
which the researchers built trust with various red teams by
collaborating with team leads (“gatekeepers”), and establishing
rapport with the informants so that they were comfortable
disclosing information. Finally, we provided assurances that
feedback would remain anonymous and confidential infor-
mation, such as details regarding undisclosed vulnerabilities,
would be scrubbed from any reports.

Interpretive validity. This dimension concerns a misin-
terpretation in how the researchers understand informants’



statements during thematic analysis, and that the resulting
themes are accurate. To reduce misinterpretation, we used
thick description [21], that is, grounding our findings by
relying on the informants’ own words whenever possible.
We also conducted interviews in pairs, and immediately after
each discussed whether our interpretations about the interview
were consistent. In cases of remaining uncertainty, we simply
went back to the informant using online chat and asked for
clarification—a form of lightweight member checking [22].

Generalizability. Semi-structured interviews do not offer
external validity in the traditional sense of nomothetic, sample-
to-population, or statistical generalization. In place of sta-
tistical generalization, our qualitative findings support an
idiographic means of satisfying external validity: analytic
generalization [23]. In analytic generalization, we generalize
from informant conversations to themes.

We conducted our study at a single company, and thus the
results may not generalize to other organizations. However,
Kotulic and Clark [11] found security research to be one of the
most intrusive types of organizational research and that “there is
undoubtedly a general mistrust of any ‘outsider’ attempting to
gain data” about an organization’s security practices. Thus, it is
difficult to obtain access to informants from organizations other
than our own. We did recruit from five different autonomous
red teams at Microsoft. Several informants also had prior
experience before joining our organization, and could contrast
their prior experiences with their current role.

V. RELATED WORK

Software security activities. Several empirical studies
explore different lenses on software security activities. Thomas
et al. [24] conduct a broad interview study with application
security experts who examine source code, or use off-the-
shelf static or dynamic analysis tools, labeling them under the
general umbrella of security auditors. Their findings suggest
that security auditors and penetration testers are generalists, and
able to conduct security activities interchangeably. However,
none of the informants in Thomas et al. [24] belonged to red
teams, and our study addresses this gap.

In contrast, our findings show that within red teams, software
security engineers are agile in their abilities but also deeply
specialize in a particular aspect of software security. The use
of off-the-shelf analysis tools for red team activities may be
useful in organizations that do not have a strong security
culture [25, 4, 26], and thus, underutilize security tools.

Hafiz and Fang [27] conducted an empirical study through
reports of three prominent security vulnerabilities, including
buffer overflows, SQL injection, and cross-site scripting—with
the goal of understanding the methods and tools used during
vulnerability discovery. We credit Hafiz and Fang [27] for their
inventive approach to obtaining informants: the study looks
at reported vulnerabilities at SecurityFocus2 and then contacts
the authors of the reports to obtain first-hand information
about activities relating to security vulnerability discovery (see

2https://www.securityfocus.com/

Section IV). A notable difference in the study methods is that
their study investigates offensive security from informants who
report vulnerabilities as a diversion or hobby, and so they tend
to attack products that are personally interesting to them.

Specialized development roles. We examine the special-
ized role of software security engineers. Other studies have
examined software engineers through the role of testing [28]
or as machine learning engineers [29, 30]. Votipka et al.
[31] interviewed hackers and testers about how they find
vulnerabilities, develop their skills, and the challenges they
face. Our findings also include some informants who worked
as testers before transitioning to software security engineering;
their responses support the findings of Votipka et al. [31].

Gagné et al. [32] examined differences between security
professionals and IT professionals; their findings show that
compared to other IT, security professionals have to man-
age a higher level of complexity. Werlinger et al. [33] use
participatory observation and interviews to identify activities
that require interactions between security practitioners and
other stakeholders. The security practitioners within the study
have the perspective of IT professionals, not software security
engineering. Posey et al. [34] conducted interviews with organi-
zational insiders, that is, employees and security professionals,
for differences in their security mindset. Vaughn et al. [35]
also observe the undeserved assumption on the effectiveness of
perimeter security. These findings triangulate with the “assume
breach” mindset employed at large organizations.

VI. DISCUSSION

A. Organizationally Supporting Red Teams

Red teams thrive in a security-aware organization. For
example, static and dynamic analysis are part of the continuous
integration pipeline at Microsoft, and “software engineers are
are not allowed to build unless they have these security tools in
place” (Peter). Thus, most issues detected by these approaches
are already addressed by software developers before they reach
a red team. Because developers are willing to take on additional
security responsibilities, red teams are able investigate more
sophisticated attack scenarios [36].

Ultimately, as Da Veiga and Eloff [37] find, an “organiza-
tion’s success or failure effectively depends on the things that
its employees do or fail to do.” When red teams function within
a security-aware organization, software security engineers are
able to expedite their security campaigns. For instance, red
teams at Microsoft typically skip initial access tactics such as
spearphishing, a tactic often used by malicious adversaries to
gain a foothold within a network. This step can be reasonably
skipped in a campaign because employees already understand
the importance of maintaining their credentials securely.

In addition to conducting offensive campaigns (Sec-
tion III-A1), red teams at Microsoft offer a number of pathways
(Section III-A3) for software engineers to engage more closely
with the red teams. One pathway is design reviews, where “a red
team will meet with a partner before implementation to identify
early design problems in the architecture and connections
between different components” (Bill). Doing design reviews



helps catch potential security problems earlier in the process,
when the issue can be more easily corrected. A second pathway
is ride-alongs, where one or more software engineers join the
red team to participate in a security campaign against their
own product or service. These pathways propagate security
knowledge throughout the organization and enable software
engineers to take a more active security role.

B. Designing Tools for Software Security Engineering

Informants expressed both a desire for scripting capabilities
in tools to enable automation, and for tools that could synthesize
source code and binary artifacts to construct explanations.

Recommendation I—Tools should support scripting or
extensions to allow for automation. As we show in Section
III-A2, the context-sensitive nature of software security requires
software security engineers to write their own ad-hoc tools and
scripts while conducting security campaigns. In addition, many
informants (n = 11) expressed a desire to initially explore
manually with their tools, but automate their strategies if that
manual exploration was productive. Informants felt some tools
supported extensibility well, including Wireshark and IDA
Pro; however, one criticism of many scripting extensions was
that they required learning a proprietary language specific to
that tool (Pat, Cliff, Eric). This suggests that tools support
extensibility, but also use a common language for extension.

Recommendation II—Tools should support both com-
prehension of code and explanation of code. The tools
that software security engineers use are similar to the tools
software engineers use, but they use them in different ways.
Rather than using integrated development environments and
debugging tools for writing code, our informants primarily
used these tools to help understand code written by others.
Informants reported that code comprehension was mostly a
manual process, and had available to them very few tools to
assist, other than basic navigation. Instead, informants had to
write ad-hoc scripts to overcome these limitations. For example,
Evan built a plugin that improved highlighting by allowing
him to highlight multiple variables at once.

As we discussed in Section III-A3, red teams have to commu-
nicate their findings to software engineers, often through reports.
To generate these reports, informants manually collected code
from multiple different projects and then stitched the relevant
code snippets together to construct logical explanations, inter-
leaving their own commentary between the code snippets. In
some cases, they would rely on text or ASCII diagrams as part
of their explanation. For red teams, program comprehension
and program explanation are first-class activities, and proper
tools need to be developed to support them. These include code
search tools that work across multiple representations, such as
disassembled binaries or obfuscated code; code explanation and
bookkeeping tools for interleaving text annotations, diagrams,
and code; and tools that facilitate understanding of data flow.

C. Tools as Both Offensive Weapons and Defensive Tools

Software security engineers have a complicated relationship
with their tools, due to their dual nature: tools can be used as

both offensive weapons, such as by an adversary—a sword,
or as a defensive tool to harden security—a shield [38]. As
we found (Section III-C1), this causes subtle but important
differences in how software security engineers publish tools.

Software security engineers are mindful about how their
offensive tools might be used by others. For this reason, security
tools are often not shared broadly, or made visible to other
teams even within the organization. As a result, the tools
that software security engineers use don’t receive as much
investment, and are therefore less mature in terms of features
and stability. Our informants reported not using third-party
tools because security engineers “aren’t confident there isn’t
a backdoor unless the tool is verified. We don’t trust security
tools from the internet unless you control the environment and
have reviewed the code” (Brian). This makes it difficult to
introduce new security tools. Paradoxically, software security
engineers see the introduction of software security tools as
potentially reducing the security of their systems.

D. Implications for Practitioners

First, red teams should comprise diverse and complementary
skills, rather than organizing teams by functional specializations.
It is precisely this diversity that allows red teams to creatively
discover vulnerabilities and exploit them in real-world, full-
stack scenarios. Second, red team activities are most effective
when their campaigns are conducted directly on production
systems; such campaigns also continually exercise detection
procedures and blue team remediation activities. We recognize
that for some organizations, conducting campaigns against
production systems is deeply uncomfortable. However, they are
essential to mitigate sophisticated threats. Third, as an emerging
role, software security engineers in red teams require drastically
different metrics and methods of evaluation for assessing
success and impact. Although software security engineers write
software, the types of activities they conduct—exploitation,
identification of novel techniques, and improvements to general
security posture—require organizational changes that support
these activities and reward them appropriately. Finally, security
is a shared responsibility: red teams are best supported within
a security-aware organizational culture.

VII. CONCLUSION

To understand the emerging role of software security red
teams, we conducted an interview study with 17 informants.
Through these interviews, we found that red teams undertake
campaigns with goals and targets that emulate the activities
of sophisticated adversaries. To achieve their goals, software
security engineers must specialize and maintain the ability
to pivot quickly. We found that software security engineers
challenge the stereotypes often applied to hackers; our software
security engineers come from diverse backgrounds. Unlike
malicious adversaries, red teams take seriously the ethical
responsibilities of white hat hacking. Although software
security engineers have some overlapping responsibilities with
security engineers, a key difference is in how they apply a
security mindset—thinking like an adversary.



ACKNOWLEDGMENTS

We thank Patrick Malone and Octavian Timofte for support-
ing this study, and the software security engineers at Microsoft
who participated in our interviews.

REFERENCES

[1] M. Ussath, D. Jaeger, and C. Meinel, “Advanced
persistent threats: Behind the scenes,” in 2016 Annual
Conference on Information Science and Systems (CISS),
Mar. 2016, pp. 181–186.

[2] F. Li, A. Lai, and D. Ddl, “Evidence of advanced
persistent threat: A case study of malware for political
espionage,” in International Conference on Malicious
and Unwanted Software, Oct. 2011, pp. 102–109.

[3] W. Tounsi and H. Rais, “A survey on technical threat
intelligence in the age of sophisticated cyber attacks,”
Computers & Security, vol. 72, pp. 212–233, 2018.

[4] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill,
C. Mayhorn, and T. Zimmermann, “Quantifying
developers’ adoption of security tools,” in Foundations
of Software Engineering (FSE), 2015, pp. 260–271.

[5] L. Bilge and T. Dumitraş, “Before we knew it: An
empirical study of zero-day attacks in the real world,” in
ACM Conference on Computer and Communications
Security (CCS), 2012, pp. 833–844.

[6] P. Chen, L. Desmet, and C. Huygens, “A study on
advanced persistent threats,” in Communications and
Multimedia Security. Springer, 2014, pp. 63–72.

[7] D. Zissis and D. Lekkas, “Addressing cloud computing
security issues,” Future Generation Computer Systems,
vol. 28, no. 3, pp. 583–592, 2012.

[8] T. Maillart, M. Zhao, J. Grossklags, and J. Chuang,
“Given enough eyeballs, all bugs are shallow? Revisiting
Eric Raymond with bug bounty programs,” Journal of
Cybersecurity, vol. 3, no. 2, pp. 81–90, Oct. 2017.

[9] S. Ransbotham, S. Mitra, and J. Ramsey, “Are markets
for vulnerabilities effective?” MIS Quarterly, vol. 36,
no. 1, pp. 43–64, 2012.

[10] S. Cubitt and R. F. Malina, Software Studies: A Lexicon.
MIT Press, 2008.

[11] A. G. Kotulic and J. G. Clark, “Why there aren’t more
information security research studies,” Information &
Management, vol. 41, no. 5, pp. 597–607, 2004.

[12] P. Biernacki and D. Waldorf, “Snowball sampling:
Problems and techniques of chain referral sampling,”
Sociological Methods & Research, vol. 10, no. 2, pp.
141–163, 1981.

[13] G. R. Sadler, H.-C. Lee, R. S.-H. Lim, and J. Fullerton,
“Recruitment of hard-to-reach population subgroups via
adaptations of the snowball sampling strategy,” Nursing
& Health Sciences, vol. 12, no. 3, pp. 369–374, 2010.

[14] C. Noy, “Sampling knowledge: The hermeneutics of
snowball sampling in qualitative research,” International
Journal of Social Research Methodology, vol. 11, no. 4,
pp. 327–344, 2008.

[15] S. E. Hove and B. Anda, “Experiences from conducting
semi-structured interviews in empirical software
engineering research,” in International Software Metrics
Symposium (METRICS), Sep. 2005, pp. 23–32.

[16] V. Braun and V. Clarke, “Using thematic analysis in
psychology,” Qualitative Research in Psychology, vol. 3,
no. 2, pp. 77–101, 2006.

[17] J. Maxwell, “Understanding and validity in qualitative
research,” Harvard Educational Review, vol. 62, no. 3,
pp. 279–301, 1992.

[18] E. M. Hutchins, M. J. Cloppert, and R. M. Amin,
“Intelligence-driven computer network defense informed
by analysis of adversary campaigns and intrusion kill
chains,” Leading Issues in Information Warfare &
Security Research, vol. 1, no. 1, pp. 80–106, 2011.

[19] C. Severance, “Bruce Schneier: The security mindset,”
Computer, vol. 49, no. 2, pp. 7–8, Feb 2016.

[20] W. G. Lutters and C. B. Seaman, “Revealing actual
documentation usage in software maintenance through
war stories,” Information and Software Technology,
vol. 49, no. 6, pp. 576–587, Jun. 2007.

[21] J. Ponterotto, “Brief note on the origins, evolution, and
meaning of the qualitative research concept thick
description,” The Qualitative Report, vol. 11, no. 3,
2006.

[22] L. E. Koelsch, “Reconceptualizing the member check
interview,” International Journal of Qualitative Methods,
vol. 12, no. 1, pp. 168–179, 2013.

[23] D. F. Polit and C. T. Beck, “Generalization in
quantitative and qualitative research: Myths and
strategies,” International Journal of Nursing Studies,
vol. 47, no. 11, pp. 1451–1458, 2010.

[24] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford,
“Security during application development: An application
security expert perspective,” in Conference on Human
Factors in Computing Systems (CHI), 2018, pp.
262:1–262:12.

[25] S. Xiao, J. Witschey, and E. Murphy-Hill, “Social
influences on secure development tool adoption: Why
security tools spread,” in Computer Supported
Cooperative Work (CSCW), 2014, pp. 1095–1106.

[26] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, and
K. Kinder-Kurlanda, “Can security become a routine? A
study of organizational change in an agile software
development group,” in Computer Supported
Cooperative Work and Social Computing (CSCW), 2017,
pp. 2489–2503.

[27] M. Hafiz and M. Fang, “Game of detections: How are
security vulnerabilities discovered in the wild?”
Empirical Software Engineering, vol. 21, no. 5, pp.
1920–1959, 2016.

[28] T. Kanij, R. Merkel, and J. Grundy, “An empirical study
to review and revise job responsibilities of software
testers,” in Visual Languages and Human-Centric
Computing (VL/HCC), 2014, pp. 89–92.



[29] C. Hill, R. Bellamy, T. Erickson, and M. Burnett, “Trials
and tribulations of developers of intelligent systems: A
field study,” in Visual Languages and Human-Centric
Computing (VL/HCC), 2016, pp. 162–170.

[30] C. J. Cai and P. J. Guo, “Software developers learning
machine learning: Motivations, hurdles, and desires,” in
Visual Languages and Human-Centric Computing
(VL/HCC), 2019, pp. 25–34.

[31] D. Votipka, R. Stevens, E. Redmiles, J. Hu, and
M. Mazurek, “Hackers vs. testers: A comparison of
software vulnerability discovery processes,” in Security
and Privacy (SP), May 2018, pp. 374–391.

[32] A. Gagné, K. Muldner, and K. Beznosov, “Identifying
differences between security and other IT professionals:
A qualitative analysis,” in Human Aspects of Information
Security & Assurance (HAISA), 2008, pp. 69–80.

[33] R. Werlinger, K. Hawkey, D. Botta, and K. Beznosov,
“Security practitioners in context: Their activities and
interactions with other stakeholders within organizations,”
International Journal of Human-Computer Studies,
vol. 67, no. 7, pp. 584–606, 2009.

[34] C. Posey, T. L. Roberts, P. B. Lowry, and R. T.
Hightower, “Bridging the divide: A qualitative
comparison of information security thought patterns
between information security professionals and ordinary
organizational insiders,” Information & Management,
vol. 51, no. 5, pp. 551–567, 2014.

[35] R. B. Vaughn, R. Henning, and K. Fox, “An empirical
study of industrial security-engineering practices,”
Journal of Systems and Software, vol. 61, no. 3, pp.
225–232, 2002.

[36] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and
D. Dig, “Trade-offs in continuous integration: Assurance,
security, and flexibility,” in Foundations of Software
Engineering (FSE), 2017, pp. 197–207.

[37] A. Da Veiga and J. Eloff, “A framework and assessment
instrument for information security culture,” Computers
& Security, vol. 29, no. 2, pp. 196–207, Mar. 2010.

[38] T. S. Rad, “The sword and the shield: Hacking tools as
offensive weapons and defensive tools,” Georgetown
Journal of International Affairs, pp. 123–133, 2015.


